
Secure and Lightweight Deduplicated Storage via
Shielded Deduplication-Before-Encryption

Zuoru Yang†, Jingwei Li‡*, and Patrick P. C. Lee†

†The Chinese University of Hong Kong ‡University of Electronic Science and Technology of China

Abstract
Outsourced storage should fulfill confidentiality and storage
efficiency for large-scale data management. Conventional ap-
proaches often combine encryption and deduplication based
on deduplication-after-encryption (DaE), which first performs
encryption followed by deduplication on encrypted data. We
argue that DaE has fundamental limitations that lead to vari-
ous drawbacks in performance, storage savings, and security
in secure deduplication systems. In this paper, we study an
unexplored paradigm called deduplication-before-encryption
(DbE), which first performs deduplication and encrypts only
non-duplicate data. DbE has the benefits of mitigating the per-
formance and storage penalties caused by the management of
duplicate data, but its deduplication process is no longer pro-
tected by encryption. To this end, we design DEBE, a shielded
DbE-based deduplicated storage system that protects dedu-
plication via Intel SGX. DEBE builds on frequency-based
deduplication that first removes duplicates of frequent data
in a space-constrained SGX enclave and then removes all
remaining duplicates outside the enclave. Experiments show
that DEBE outperforms state-of-the-art DaE approaches.

1 Introduction
Data outsourcing to public cloud storage provides a plausible
solution for low-cost, large-scale data storage management in
the face of explosive data growths [71]. To defend against data
privacy leakage [57], clients require end-to-end encryption,
such that their outsourced data be encrypted before being
stored in (untrusted) public cloud storage. However, tradi-
tional symmetric encryption prohibits cross-user deduplica-
tion (i.e., removing duplicate data from multiple clients), since
each client encrypts its own outsourced data with a distinct
secret key, implying that the encrypted outputs from multiple
clients are also distinct.

The literature has numerous studies (e.g., [3, 7, 8, 18, 23,
72, 74, 79]) on how to seamlessly combine encryption and
deduplication for secure deduplicated storage in data out-
sourcing, which we collectively refer to as deduplication-
after-encryption (DaE). DaE first performs encryption on the
outsourced data on the client side for confidentiality, followed
by applying cross-user deduplication in the cloud to remove
duplicate encrypted data for storage savings. To preserve the
identical content after encryption, DaE encrypts data using a

*Corresponding author: Jingwei Li (jwli@uestc.edu.cn)

symmetric key derived from the content of each chunk (the ba-
sic unit of deduplication), such that duplicate original chunks
(called plaintext chunks) are always encrypted by the same
key into duplicate encrypted chunks (called ciphertext chunks)
that are later removed by deduplication.

Despite its popularity, we argue that DaE has fundamental
limitations including high key management overhead, incom-
patibility with compression, and security risks (see §2.1 for
details). Since DaE always manages a key for each chunk
for encryption before deduplication, it not only unnecessarily
generates a huge number of keys for duplicate chunks that
will later be removed by deduplication, but also incurs high
storage overhead for managing a huge number of keys for all
duplicate and non-duplicate chunks [47]. In addition, DaE
stores non-duplicate encrypted chunks, whose contents look
randomized and have limited room for further space reduction
from compression. Furthermore, DaE necessitates determin-
istic encryption to preserve the deduplication capability on
ciphertext chunks. Such a deterministic nature is vulnerable
to information leakage through frequency analysis [48, 49].

The limitations of DaE motivate us to explore a simple but
unexplored paradigm called deduplication-before-encryption
(DbE), which first performs deduplication on the plaintext
chunks and then encrypts the remaining non-duplicate plain-
text chunks with any key that is independent of the chunk
content. A major distinction from DaE is that DbE does not
need to manage per-chunk keys for encryption/decryption, and
we argue that DbE addresses the limitations of DaE (§2.2).
However, DbE remains unexplored in secure deduplicated
storage, mainly because the chunks are no longer protected
by encryption in deduplication processing, which is carried
out in the cloud for cross-user deduplication.

Our insight is that the deduplication process in DbE can
be protected with shielded execution [4, 37]. To this end,
we present DEBE, a shielded DbE-based deduplicated stor-
age system with performance, storage savings, and security
in mind. DEBE builds on Intel Software Guard Extensions
(SGX) [41], which provides a shielded execution environment,
called an enclave, for secure deduplication processing. A key
challenge of realizing DEBE in SGX is the limited enclave
space (e.g., up to 128 MiB [36]). Thus, we propose frequency-
based deduplication, a two-phase deduplication scheme that
can realize secure and lightweight deduplication with the
space-constrained enclave. Specifically, DEBE first performs
deduplication on the most frequent chunks inside an enclave,

jwli@uestc.edu.cn

motivated by our observation that the most frequent chunks
often contribute to a large fraction of duplicates in real-world
backup workloads (§4.1). It then performs deduplication on
the remaining less frequent chunks outside the enclave. With
frequency-based deduplication, DEBE has the key advantages
of: (i) high performance, as it removes most duplicates in the
first-phase deduplication and incurs limited performance over-
head for the second-phase deduplication outside the enclave;
(ii) high storage savings via both deduplication and compres-
sion; and (iii) security, as it protects the most frequent chunks
(which are more vulnerable to frequency analysis attacks [48])
inside the enclave.

We evaluate our DEBE prototype in a LAN testbed. DEBE
achieves significant speedups over state-of-the-art DaE ap-
proaches (e.g., 10.09× and 13.08× speedups over DupLESS
[7] in uploading non-duplicate and duplicate data, respec-
tively). In our technical report [81], we also show that DEBE
achieves high storage savings (e.g., 93.8% of key metadata
storage savings compared with DaE) and reduces information
leakage without compromising storage savings (e.g., by 87.7%
of the relative entropy over TED [49], while TED incurs a
storage blowup). The source code of our DEBE prototype is
at: https://github.com/yzr95924/DEBE.

2 Background and Motivation
2.1 Limitations of Deduplication-after-Encryption

Deduplication is a widely deployed data reduction technique
in modern storage [26, 27, 59, 77, 85]. We focus on chunk-
based deduplication, which removes duplicates at the granu-
larity of a chunk. Specifically, a deduplicated storage system
partitions input file data into chunks. It identifies each chunk
by a cryptographic hash (e.g., SHA-256), called a fingerprint,
of the chunk content (assuming that fingerprint collisions of
distinct chunks are practically impossible [10]). It maintains
a key-value store, called the fingerprint index, to track the
fingerprints of all existing stored chunks, and stores only the
non-duplicate chunks. It also stores a manifest file, called
the file recipe, for each file to track all chunks of the file in
storage for file reconstruction. In addition, it may further ap-
ply compression to remove byte-level duplicates within the
non-duplicate chunks for more storage savings [27, 73, 85].

Deduplication-after-encryption (DaE) combines dedupli-
cation and encryption for both confidentiality and storage
savings. In DaE, a client locally encrypts the plaintext chunks
and uploads the ciphertext chunks to the cloud, which then
performs deduplication on the ciphertext chunks. One popular
cryptographic primitive for DaE is message-locked encryption
(MLE) [8], which formalizes that the key for chunk encryp-
tion/decryption is derived from the content of each chunk,
so that identical plaintext chunks are always encrypted into
identical ciphertext chunks for deduplication. An instantiation
of MLE is convergent encryption (CE) [3, 18, 23, 72, 74, 79],
which derives each chunk’s key based on its fingerprint.

CE is vulnerable to offline brute-force attacks [7], in which
an adversary enumerates all possible plaintext chunks to de-
rive their secret keys, attempts to decrypt a ciphertext chunk
using each key, and deduces the plaintext chunk if the decryp-
tion succeeds. DupLESS [7] defends against offline brute-
force attacks in CE via server-aided key management, by
deploying a key server that generates the key of each chunk
based on a global secret (securely owned by the key server)
and the chunk fingerprint. Also, DupLESS implements key
generation based on an oblivious pseudorandom function
(OPRF) [63] to prevent the key server from learning the
chunks or the keys during key generation, and rate-limits
the key generation requests from clients to defend against
online brute-force attacks, in which a malicious client aggres-
sively issues key generation requests for different plaintext
chunks to the key server.
Limitations. DaE is the state-of-the-art paradigm for building
secure deduplicated storage systems. However, we argue that
DaE suffers from three fundamental limitations.

• L1 (High key management overhead). DaE generates one
key per chunk, leading to huge overheads for maintaining
all chunk-based keys. Also, each client needs to encrypt
its chunk-based keys via its own master secret key for pro-
tection. Thus, the key storage overhead increases propor-
tionally with the numbers of chunks and clients, and is
particularly significant for the workloads with high content
redundancy (e.g., backups [77]) as they store only small
amounts of non-duplicate data after deduplication. Also,
DupLESS [7], which realizes server-aided key management,
generates a key for the encryption of each chunk before the
chunk is uploaded to the cloud, even though the chunk is a
duplicate and is later removed by deduplication. As Dup-
LESS employs OPRF and rate-limiting in key generation
(see above), its key generation is shown to be expensive [70].
In short, DaE incurs high key management overhead, both
in terms of key storage and key generation.

• L2 (Incompatibility with compression). In DaE, the cloud
cannot further save additional storage space of non-
duplicate encrypted chunks via compression, as encrypted
chunks have high-entropy (almost random) contents. While
a client may apply compression to the plaintext chunks
before encryption and upload the encrypted compressed
chunks, this leaks the compressed chunk lengths and intro-
duces security risks [13].

• L3 (Security risks). Server-aided key management in Dup-
LESS [7] makes the key server a single point-of-attack. If
an adversary compromises the key server and has access to
the global secret, it can infer the secret keys of chunks via
offline brute-force attacks as in CE. Also, DaE is determin-
istic by nature and realizes one-to-one mappings between
plaintext chunks and ciphertext chunks. An adversary can
launch frequency analysis to infer the original plaintext
chunks from the frequency distribution of ciphertext chunks
in deduplicated storage [48].

https://github.com/yzr95924/DEBE

2.2 Moving to Deduplication-before-Encryption
Given the limitations of DaE (§2.1), we study an unexplored
paradigm, namely deduplication-before-encryption (DbE),
for secure deduplicated storage. Its idea is to first perform
deduplication on the plaintext chunks to remove duplicates,
followed by encrypting the non-duplicate plaintext chunks
into ciphertext chunks for storage.

DbE naturally offers several benefits over DaE. First, since
deduplication is applied first, DbE can encrypt each non-
duplicate plaintext chunk with a content-independent key as in
traditional symmetric encryption (§1) without compromising
deduplication. This avoids generating and storing per-chunk
content-derived keys and reduces the key management over-
head (i.e., L1 addressed). Second, DbE can apply compres-
sion to the non-duplicate plaintext chunks after deduplication
for further storage savings, followed by encrypting the com-
pressed non-duplicate plaintext chunks (i.e., L2 addressed).
Finally, since DbE can perform encryption with a content-
independent key, it no longer needs a key server for per-chunk
key generation as in DupLESS. This removes the single point-
of-attack in the key server (i.e., L3 addressed).

The major challenge of DbE, however, is to decide whether
clients or the cloud should perform deduplication, which is no
longer protected by encryption. We consider three scenarios:

• Each client maintains a local fingerprint index for its own
plaintext chunks. It encrypts the non-duplicate plaintext
chunks and uploads the ciphertext chunks to the cloud.
However, this approach prohibits cross-user deduplication.

• The cloud maintains a global fingerprint index to track the
stored chunks of all clients. Each client first submits the
fingerprints of its own plaintext chunks to the cloud to query
if they can be deduplicated. It encrypts the non-duplicate
plaintext chunks identified by the cloud, and uploads the
ciphertext chunks to the cloud. This approach, also referred
to as source-based deduplication [35], is vulnerable to side-
channel attacks [35,62] since any malicious client can infer
if some target chunk has already been stored by querying if
the target chunk can be deduplicated.

• Each client uploads all chunks to the cloud. The cloud per-
forms deduplication based on its global fingerprint index
that tracks the stored chunks of all clients, followed by
encrypting the non-duplicate chunks. This approach, also
referred to as target-based deduplication [35], hides the
deduplication pattern from the clients and is secure against
side-channel attacks. However, each client inevitably ex-
poses its plaintext chunks to the cloud.

Thus, DbE remains unexplored in the literature, while existing
studies mostly focus on DaE for secure deduplicated storage.

2.3 Intel SGX
In this work, we realize DbE with target-based deduplication
and show how we protect DbE via shielded execution. We
implement shielded execution using Intel SGX [41]. As our

major requirement is to provide a secure memory region for
data processing in the untrusted cloud, we conjecture that
our design can be supported with other shielded execution
technologies (e.g., ARM TrustZone [67] and AMD SEV [2]).
SGX basics. SGX is a set of extended instructions for In-
tel CPUs to realize a shielded execution environment, called
an enclave, in an encrypted and integrity-protected memory
region called the enclave page cache (EPC). It ensures confi-
dentiality and integrity for in-enclave contents with hardware
protection. It provides two interfaces to interact with untrusted
applications outside the enclave: (i) enclave calls (ECalls),
which permit applications to safely access in-enclave contents,
and (ii) outside calls (OCalls), which allow in-enclave code
to issue function calls in applications.
Challenges. Realizing DbE in SGX is non-trivial due to the
resource constraints of an enclave. First, the EPC size is lim-
ited (e.g., up to 128 MiB [36]). When an enclave has memory
usage exceeding the EPC size, it encrypts and evicts the un-
used memory pages to the unprotected main memory, and
decrypts and verifies the integrity of the evicted pages when
loading them back to the EPC. This incurs expensive EPC
paging overhead [5, 21]. Although recent SGX designs sup-
port a large EPC size of up to 1 TiB [44], they provide weaker
security guarantees due to the loss of integrity tree protec-
tion [28]. Second, both ECalls and OCalls involve expensive
hardware operations (e.g., flushing TLB entries [5]) that lead
to significant context switching overhead (e.g., around 8,000
CPU cycles per call [66, 78]).

3 Design Overview
3.1 DEBE Architecture

We make a case for DbE by designing DEBE, a shielded DbE-
based deduplicated storage system based on Intel SGX [41].
Figure 1 presents the architecture of DEBE; note that DEBE
does not maintain a key server as in DupLESS [7] (§2.1). We
consider a multi-tenant scenario, in which the clients from dif-
ferent organizations store outsourced data to a cloud storage
service (or the cloud in short). DEBE performs target-based
deduplication [35] (§2.2) to remove the duplicate data of
multiple clients in the cloud. Currently, each DEBE client
uploads all its data to the cloud for deduplication. Although a
client may apply deduplication to its own data to save upload
bandwidth without introducing side-channel attacks [50], our
design does not make this assumption.

To prevent the cloud from accessing any plaintext chunks
during deduplication processing, DEBE hosts an enclave in
the cloud and performs deduplication inside the enclave. To
support the multi-tenant scenario, we assume that a trusted
third party (e.g., a certificate authority in the public key in-
frastructure (PKI) [56]) is responsible for the enclave setup.
Specifically, the trusted third party compiles the enclave code
into a shared object (as a .so file). It distributes the shared
object to the cloud, along with its signature for integrity ver-

Cloud

Enclave

Storage

pool

Control channel

Data channel
Clients

Chunk … Chunk

Figure 1: DEBE architecture.

ification. The cloud loads the shared object to bootstrap the
enclave. The trusted third party can initiate remote attesta-
tion [41] to ensure that the correct code is loaded into the
enclave, and it can go offline after the enclave is bootstrapped.

After the enclave is bootstrapped, each client sets up two
secure communication channels: (i) the control channel with
the cloud for transmitting the commands of storage operations
and (ii) the data channel with the enclave for transmitting the
plaintext chunks originated by the client. Currently, DEBE
sets up the control channel between a client and the cloud
using traditional SSL/TLS authentication. To set up the data
channel between a client and the enclave, since the enclave
cannot directly access the network socket of the cloud [41],
DEBE implements the Diffie-Hellman key exchange to agree
on a session key between a client and the enclave (§4.2), and
the session key is used to protect the data channel. Note that
other key exchange algorithms can be used for session key
establishment.

To upload a file to the cloud, a client divides the file data
into fixed-size or variable-size plaintext chunks as in tradi-
tional chunk-based deduplication (§2.1). It issues an upload
request to the cloud through the control channel, and sends all
plaintext chunks to the enclave through the data channel. The
enclave deduplicates and compresses the received plaintext
chunks on a per-batch basis (§4.1), encrypts the remaining
non-duplicate compressed chunks into ciphertext chunks, and
emits the ciphertext chunks and the file recipe to the storage
pool.

To download a file, the client issues a download request
to the cloud through the control channel. The enclave then
retrieves the file’s recipe and the corresponding ciphertext
chunks. Finally, it decrypts the ciphertext chunks, and decom-
presses and returns the plaintext chunks to the client through
the data channel.
Practical relevance of DEBE. DEBE focuses on multi-
tenant deduplication, which is widely deployed in practice
(e.g., Dropbox [24], Druva [25], Cohesity [14], and Memo-
pal [58]) and is shown to achieve higher storage savings than
single-tenant deduplication by removing the duplicate data
from multiple clients [50,59,83]. Existing DaE approaches are
also designed for multi-tenant deduplication, while DEBE ad-
dresses the limitations of DaE (§2.1). Although DEBE incurs
costs due to shielded execution (e.g., the enclave verification
fee from a trusted third party), its improvements over DaE
approaches (in terms of performance, storage savings, and
robustness; see §3.3) provide incentives for a cloud storage
provider to use DEBE to provide secure and cost-effective
cloud storage services for customers.

3.2 Threat Model
We consider an honest-but-curious adversary that does not
modify the system protocol but aims to compromise data
confidentiality by identifying the original content of the out-
sourced data stored in the cloud. The adversary can tap into
the cloud and gain access to any data stored in the unpro-
tected main memory of the cloud as well as the ciphertext
chunks in the storage pool. It can also eavesdrop on the con-
tent of OCalls issued to the unprotected main memory (e.g.,
the parameters and untrusted functions used by OCalls).

Our threat model assumes that the enclave is trusted and
reliable; its authenticity is verified by remote attestation [41]
when it is created (§3.1). Any denial-of-service or side-
channel attack against SGX is protected by existing solu-
tions [64, 76]. Also, if the adversary has access to a com-
promised client, then it can access all the plaintext chunks
of the client. However, since DEBE performs target-based
deduplication (§3.1), the adversary cannot access or infer the
plaintext chunks of other non-compromised clients.

3.3 Design Goals
DEBE is designed for clients from multiple tenants (§3.1)
to securely outsource their storage management to public
cloud storage services. It targets storage workloads with high
content redundancy (e.g., backups [77] and file system snap-
shots [59]) that can be effectively removed by deduplication
and compression. DEBE has the following design goals:

• High performance. DEBE has significantly lower key man-
agement overhead than DaE approaches. It also incurs lim-
ited overhead in SGX.

• High storage savings. DEBE supports exact deduplication
(§4.4), i.e., all duplicates from multiple clients can be re-
moved. It also applies compression to the non-duplicate
chunks after deduplication for extra storage savings.

• Confidentiality. DEBE preserves the security of DaE by
enforcing end-to-end encryption for the plaintext chunks be-
tween each client and the enclave, and the plaintext chunks
are inaccessible by the cloud provided that the enclave is
trusted and reliable (§3.2). DEBE remains secure against
offline brute-force attacks in CE (§2.1), without the need
of server-aided key management as in DupLESS [7].

• Robustness over DaE. DEBE mitigates the single point-of-
attack of DaE by eliminating the key server. It also miti-
gates the information leakage caused by frequency analysis
against DaE [48, 49].

4 Detailed Design
4.1 Main Idea
DEBE’s core idea is to perform deduplication inside the en-
clave (hosted in the cloud), so as to provide confidentiality
guarantees for the plaintext chunks during the deduplication
process. Keeping a full fingerprint index (or the full index
in short) inside the enclave can track the fingerprints of all

 0
 20
 40
 60
 80
100

 0 20 40 60 80 100
Top-#% Frequent Chunks

D
up

lic
at

e
Ra

te
 (%

)

DOCKER
LINUX

VM
FSL

MS

Figure 2: Duplicate rate versus top-percentage of frequent chunks
in five real-world traces.

non-duplicate chunks being stored, but incurs significant EPC
paging overhead due to the limited EPC size (§2.3). Alter-
natively, managing the full index outside the enclave saves
the EPC usage, but incurs expensive context switching due to
excessive OCalls for querying the full index (§2.3).

We propose frequency-based deduplication, which per-
forms secure deduplication subject to the resource constraints
of the enclave. Our insight is that the frequencies (i.e., num-
bers of duplicates) of chunks are highly skewed in practical
backup workloads, such that a small fraction of chunks can
contribute to a large fraction of duplicates. To justify, we con-
duct trace analysis on five real-world backup traces (see §6.1
for the trace details). We measure the duplicate rate for a sub-
set of input chunks, defined as the ratio between the total size
of duplicate chunks derived from the subset of chunks and the
total size of duplicate chunks in the whole trace (note that a
chunk is said to be a duplicate chunk if its identical copy has
already been stored and it can be removed by deduplication).
Figure 2 shows the duplicate rate versus the top-percentage
of frequent chunks (ranked by their frequencies in descending
order). For example, in the VM trace, the top-5% of frequent
chunks contribute to a duplicate rate of around 97%. This
implies that if we maintain a small fingerprint index to track
the top-5% of frequent chunks, we can remove around 97%
of duplicate data and achieve high storage savings.

The idea of frequency-based deduplication is to separate
the deduplication process based on chunk frequencies. It man-
ages a small fingerprint index inside the enclave to remove the
duplicates from the most frequent chunks. It also maintains
the full index outside the enclave to remove the remaining du-
plicates for the less frequent chunks. Frequency-based dedu-
plication addresses both performance and security concerns.
For performance, it only manages a small fingerprint index
for the most frequent chunks inside the enclave to remove
a large fraction of duplicate chunks. Thus, it mitigates the
EPC paging overhead. It also reduces the context switching
overhead as it only queries the full index outside the enclave
via OCalls for a limited fraction of less frequent chunks. For
security, since the most frequent chunks are more vulnerable
to frequency analysis [48], we remove the duplicates of the
most frequent chunks with in-enclave processing only. Thus,
an adversary in the cloud cannot readily learn the frequen-
cies of the most frequent chunks, and hence the information

Storage

pool

Cloud

frequency-based

deduplication

key management

frequency

tracking

e
n

c
ry

p
tio

n

Enclave

c
o

m
p

re
s
s
io

n
full index

q
u

e
ry

 k
e

y

data key

2

3 4

1

Figure 3: Architecture of the enclave.

leakage caused by frequency analysis is limited.
Enclave architecture and design roadmap. Figure 3 de-
picts the architecture of the enclave in DEBE. Initially, the
enclave is bootstrapped with a set of keys and establishes
secure data channels with each client (§4.2). Then the enclave
tracks the frequency of each plaintext chunk received from the
data channel of a client (§4.3). Based on the chunk frequen-
cies, frequency-based deduplication removes the duplicates
of the most frequent plaintext chunks and interacts with the
full index outside the enclave to remove the duplicates of the
remaining less frequent plaintext chunks (§4.4). The enclave
performs compression on the non-duplicate plaintext chunks
and encrypts the compressed plaintext chunks. Finally, the
enclave stores the ciphertext chunks in the storage pool (§4.5).

4.2 Key Management
The enclave maintains a set of keys for the secure storage of
chunks after deduplication and compression as well as for
secure communication with clients.
Data key and query key. The enclave maintains two long-
term keys, which remain valid throughout the lifetime of the
enclave (i.e., the whole duration when DEBE is running): (i)
the data key for encrypting and decrypting the compressed
non-duplicate plaintext chunks in secure storage, and (ii) the
query key for protecting the information of plaintext chunks
when querying the full index outside the enclave (§4.4). When
the enclave is bootstrapped, it initializes both the data key
and the query key via the on-chip hardware random num-
ber generator (i.e., sgx read rand [42]). Both keys can be
periodically renewed via existing approaches (e.g., key regres-
sion [30]), without compromising deduplication as DEBE
performs deduplication before encryption.
Session key. Recall that each client maintains a data chan-
nel with the enclave for secure data communication (while
maintaining a control channel with the cloud for securely is-
suing storage operations) (§3.1). Each data channel protects
its communication using a short-term session key, which re-
mains valid for a single communication session. It establishes
a session key for the data channel using Diffie-Hellman key
exchange through the control channel. The session key is
kept in the enclave during the communication session of the
client, and will be freed after the session is completed (both
the control and data channels will be released as well).
Per-client master key. The enclave requires each client to

submit a master key through the data channel for each storage
request. It uses the master key to protect the file recipes for
the client’s files and enforces the client’s ownership of the
files. Similar to the session keys, the enclave only keeps the
master key of the client for a single communication session
and will destroy the master key at the end of the session, so
the storage overhead for the master keys is also limited.

4.3 Frequency Tracking
The enclave needs to track the frequencies of plaintext chunks
to identify the most frequent and less frequent chunks for
frequency-based deduplication. To mitigate the EPC usage
(§2.3), the enclave uses a Count-Min Sketch (CM-Sketch) [16]
to track the approximate frequency of each chunk with fixed-
size space and small errors.

The CM-Sketch is a two-dimensional array with r rows
of w counters each. One key design here is to limit the com-
putational overhead of mapping the plaintext chunks to the
counters. To do so, our insight is that the chunk fingerprint is
computed as a cryptographic hash (e.g., SHA-256 in our case),
so we can treat the chunk fingerprint as a random input value
and map it directly to a counter without compromising the
accuracy of the CM-Sketch. Specifically, for each plaintext
chunk M, the enclave partitions the fingerprint of M into r
pieces. It takes the i-th piece modulo w to find one of the w
counters, indexed from 0 to w− 1, in row i (1 ≤ i ≤ r) and
increments each of the mapped counters by one; this is in
contrast to the traditional CM-Sketch, which maps the input
to the counters of different rows using pairwise independent
hash functions [16] and hence has extra computational over-
head. To estimate the frequency of a chunk, the enclave uses
the minimum value of the r mapped counters of the chunk. By
default, we configure r = 4, w = 256 K, and 4-byte counters,
so the overall EPC usage of the CM-Sketch is only 4 MiB.

4.4 Frequency-based Deduplication
We present the design of frequency-based deduplication,
which removes all duplicate plaintext chunks in two phases
based on their estimated frequencies (§4.3).
First-phase deduplication. The enclave maintains a small
fingerprint index, called the top-k index, to deduplicate the k
most frequent plaintext chunks. We implement the top-k index
as a combination of a min-heap and a hash table, as shown
in Figure 4. The min-heap differentiates the top-k-frequent
and less frequent plaintext chunks. It tracks top-k estimated
frequencies of the plaintext chunks, such that the root heap
entry corresponds to the plaintext chunk with the minimum
frequency in the current top-k estimated frequencies. Each
heap entry in the min-heap stores a pointer to a hash entry in
the hash table. On the other hand, the hash table is used for
duplicate detection, as in conventional deduplication. Each
hash entry stores a mapping from the chunk fingerprint to a
tuple of elements: (i) the pointer to the heap entry (i.e., both
the heap entry and the hash entry reference each other), (ii)

hash table

………

………

………

min-heap

FP addrfreq size

FP addrfreq size

FP addrfreq size

Figure 4: Overview of the top-k index.

the estimated frequency of the chunk, (iii) the chunk address
(including the container ID and the internal offset within the
container; see §4.5), and (iv) the compressed chunk size (i.e.,
the size of the chunk after compression).

Given a plaintext chunk, to perform the first-phase dedu-
plication, the enclave takes the estimated frequency of the
plaintext chunk obtained from the CM-Sketch (§4.3) and the
chunk fingerprint as inputs. It first checks against the root heap
entry of the min-heap. If the input frequency is smaller than
the minimum frequency of the min-heap (i.e., the chunk is a
less frequent chunk), the enclave skips querying the hash table
for the chunk and proceeds to the second-phase deduplica-
tion (see below); otherwise (i.e., the chunk is a top-k-frequent
chunk), the enclave uses the input fingerprint to look up the
hash table. We have the following two cases:

• If the fingerprint is found in the hash table (i.e., the chunk is
a duplicate), the enclave updates the frequency in the hash
table and adds both the chunk address and the compressed
chunk size to the file recipe (§4.5). Since the frequency is
updated, it also adjusts the min-heap based on the pointer
to the heap entry in the min-heap.

• If the fingerprint is not found in the hash table (i.e., the
chunk is a new top-k-frequent chunk), the enclave creates
a new hash entry in the hash table and inserts a new heap
entry containing the pointer to the new hash entry into the
min-heap. If the min-heap has already stored k heap entries,
the enclave deletes the current root heap entry of the min-
heap (with the minimum frequency) and also deletes the
corresponding hash entry in the hash table via the pointer
stored in the root heap entry. Since the chunk may have
already been stored (but not tracked by the top-k index as its
frequency is low), the enclave also runs the second-phase
deduplication on the chunk and updates the chunk address
and the compressed chunk size according to the result of
the second-phase deduplication.

We show that the top-k index has low space usage. Suppose
that the chunk fingerprint has 32 bytes (a SHA-256 hash), the
chunk address has 12 bytes (an 8-byte container ID and a
4-byte internal offset; see §4.5), and the compressed chunk
size has 4 bytes. For each top-k-frequent chunk, the hash
entry additionally stores a 4-byte frequency and a pointer to a
heap entry. Since we implement the min-heap as an array, the
pointer to a heap entry can be represented as a 4-byte integer
array index. Also, the heap entry keeps an 8-byte pointer to a
hash entry. Overall, each top-k-frequent chunk uses 64 bytes

in the top-k index (excluding the internal pointers of the hash
table, which we now implement as an unordered map of
the C++ standard library). For example, to track 512 K most
frequent chunks, the EPC usage of the top-k index is 32 MiB.

We further show that the top-k index has low time complex-
ity. For each plaintext chunk, the top-k index can return the
minimum frequency (from the root heap entry) in the current
min-heap in constant time. For a top-k-frequent chunk, the
top-k index needs to further check the hash table (in constant
time) and update the min-heap. Since we store the pointer
to the heap entry in the hash entry, we can directly update
the corresponding heap entry when the frequency is changed,
without searching the whole min-heap for its location. Thus,
the time complexity of updating the min-heap is O(logk).
Second-phase deduplication. The second-phase deduplica-
tion is performed on the plaintext chunks that are not removed
by the first-phase deduplication, including the less frequent
chunks and the fresh new top-k-frequent chunks whose fin-
gerprints are new to the top-k index. DEBE manages a full
index outside the enclave as the EPC size is limited (§2.3).
We implement the full index as a hash table, in which each
entry stores the mapping from the encrypted fingerprint of a
plaintext chunk to the encrypted chunk information (i.e., the
chunk address and the compressed chunk size, both of which
are encrypted by the query key) of the corresponding cipher-
text chunk. Our rationale of encrypting both the fingerprint
and the chunk information is to prevent any adversary in the
cloud from inferring the plaintext chunks, since the full index
is not protected by the enclave.

Given a plaintext chunk, to perform the second-phase dedu-
plication, the enclave deterministically encrypts the finger-
print of the plaintext chunk (not removed by the first-phase
deduplication) with the query key (§4.2), so that duplicate
plaintext chunks from different clients are always mapped to
duplicate encrypted fingerprints for cross-user deduplication.
It then queries the full index based on the encrypted fingerprint
via an OCall. If the encrypted fingerprint is found in the full
index, the OCall returns the encrypted chunk information that
will be decrypted by the query key inside the enclave. Then
the enclave will update the address and the compressed chunk
size into the file recipe (§4.5). Otherwise, if the encrypted
fingerprint is new to the full index, the enclave identifies this
chunk as a non-duplicate chunk, assigns the chunk an address,
compresses the chunk to obtain its compressed chunk size,
and encrypts both the address and the compressed chunk size
with the query key. It then updates the encrypted fingerprint
and the corresponding encrypted chunk information in the full
index. Note that the context switching overhead due to OCalls
is limited, as a large fraction of duplicates are expected to
have been removed by the first-phase deduplication.
Remarks. Traditional efficient indexing techniques for dedu-
plication, such as similarity-based [9] and locality-based dedu-
plication [52] approaches, can also address the limited EPC
size by loading only a portion of the full index into the en-

clave. However, they only achieve near-exact deduplication
(i.e., some duplicates cannot be removed), while DEBE can
achieve exact deduplication (§3.3).

Note that the CM-Sketch may overestimate the chunk fre-
quencies as multiple chunks can be mapped to the same coun-
ters (§4.3). Thus, the enclave may track some less frequent
chunks in the top-k index. Nevertheless, it does not affect
the storage savings from deduplication, as the full index still
tracks all currently stored non-duplicate chunks.

4.5 Storage Management
Container storage. DEBE manages physical chunks in fixed-
size containers to mitigate disk I/O costs [51]. The en-
clave performs compression on the non-duplicate plaintext
chunks after deduplication, and encrypts the compressed non-
duplicate plaintext chunks into ciphertext chunks with the
data key. It writes each ciphertext chunk, together with an
initialization vector (IV) (§5), into an in-memory container
inside the enclave. When the in-memory container is full,
the enclave emits it to persistent storage in the cloud. Note
that DEBE only stores an IV (of size 16 bytes in AES-256)
for each non-duplicate ciphertext chunk after deduplication,
while DaE approaches store an encrypted key (of size 32 bytes
in AES-256) for each ciphertext chunk before deduplication
and incurs substantial key storage overhead when there exist
many duplicate chunks (§2.1).

Also, the enclave creates and manages the file recipe for
each uploaded file. Each entry in the file recipe keeps the
chunk address and the compressed chunk size of each cipher-
text chunk of the file. Note that when the enclave adds entries
to the file recipe, it does not need to perform compression for
the duplicate chunk to obtain its compressed chunk size, since
the compressed chunk size has been stored in both the top-k
index and the full index. To guarantee the ownership of the
file, the enclave encrypts the file recipe by the client’s master
key and stores the encrypted file recipe as a regular file. Since
the enclave treats containers (each of which contains multiple
ciphertext chunks) as the basic I/O units and the chunk size
is stored in the file recipe (protected by the per-user master
key), DEBE preserves the security of compression as it avoids
leaking the lengths of compressed chunks [13].
Downloads. To download a file, the client issues a download
request and its master key to the enclave through the secure
data channel. The enclave retrieves the file recipe and de-
crypts the file recipe with the given master key. It then parses
the decrypted file recipe to obtain the chunk addresses and
compressed chunk sizes. To restore all chunks, the enclave
exposes the container IDs of the requested chunks to the cloud
to perform I/Os via OCalls. Once the cloud fetches the corre-
sponding containers into the unprotected main memory, the
enclave accesses the ciphertext chunks based on their internal
offsets and decrypts the ciphertext chunks by the data key.
Finally, it decompresses and sends the plaintext chunks to the
client through the data channel.

4.6 Security Discussion
We discuss the security of DEBE in response to our threat

model (§3.2). We focus on two cases.
Case 1: A snapshot adversary gains one-time access to
contents in unprotected memory and storage pool. DEBE
enforces end-to-end encryption for the plaintext chunks be-
tween each client and the enclave, and provides semantic
security [33] for the ciphertext chunks stored in the cloud.
Specifically, it sets up a secure data channel that encrypts
all plaintext chunks exchanged between a client and the en-
clave by a session key. It performs deduplication inside the
enclave (that is oblivious to the adversary), and encrypts the
non-duplicate plaintext chunks into ciphertext chunks by the
data key before the ciphertext chunks are stored. Note that
both data-in-transit and data-at-rest encryption operations are
based on traditional symmetric encryption, and semantic se-
curity is achieved.
Case 2: A persistent adversary eavesdrops on OCalls in
deduplication. DEBE encrypts both chunk fingerprints and
chunk information by the query key inside the enclave before
it includes them as the inputs of OCalls for accessing the full
index outside the enclave. Thus, even though an adversary can
eavesdrop on the OCalls, it cannot infer the original inputs
from the OCalls.

One potential information leakage is that a persistent ad-
versary (that stays in the cloud for a long time) can learn
the chunk frequencies in the deduplication process, as the
enclave maps duplicate plaintext chunks into duplicate en-
crypted fingerprints when querying the full index. Specifically,
the adversary can track the frequency distribution of encrypted
fingerprints by monitoring the OCalls, and launch frequency
analysis to infer the plaintext chunks. However, DEBE limits
such information leakage to the less frequent chunks, which
are relatively robust against frequency analysis [48] (for com-
parisons, DaE leaks the frequencies of all chunks since it
is deterministic by nature; see §2.1). Our evaluation shows
that DEBE mitigates information leakage more effectively
than TED [49], a state-of-the-art approach that trades storage
savings for security (see our technical report [81]).
Remarks. A powerful adversary may launch frequency-based
side-channel attacks by simultaneously compromising a client
and the cloud. If it proactively lets the compromised client
upload artificial chunks to the cloud and monitors OCalls in
the cloud, the adversary could infer chunk frequencies and
even identify the most frequent chunks among the clients.
While the practical damage caused by such side-channel at-
tacks remains an open question, we can obfuscate the chunk
frequency information by perturbing the OCalls patterns (e.g.,
adding dummy OCalls), at the expense of incurring extra
performance overhead.

5 Implementation
We have implemented a prototype of DEBE in C++ on Linux
based on Intel SGX SDK Linux 2.7 [42]. It uses OpenSSL-

1.1.1 [65] and Intel SGX SSL [43] for cryptographic opera-
tions. Our current prototype contains 17.5 K LoC.

Each client implements FastCDC [80] to realize content-
defined chunking, where the minimum, average, and maxi-
mum chunk sizes are configured at 4 KiB, 8 KiB, and 16 KiB,
respectively. The container size is 4 MiB. We implement
Diffie-Hellman key exchange based on NIST P-256 ellip-
tic curve for session key management of the data channel
between the client and the enclave. The enclave computes the
fingerprints of plaintext chunks via SHA-256 and encrypts
each unique plaintext chunk via AES-256 in GCM mode with
a random 16-byte IV. Also, it encrypts the fingerprint of each
plaintext chunk via AES-256 in CMC mode with a 16-byte
zero IV to support queries over encrypted fingerprints (as in
CryptDB [68]). Both SHA-256 and AES-256 are configured
to use (via OpenSSL EVP API) the Intel New Instructions
Set for hardware-accelerated operations [39, 40]. We also im-
plement LZ4 [15] for lossless stream-based compression in
the enclave for chunk compression after deduplication.

To mitigate context switching overhead of the enclave,
DEBE transmits and processes chunks on a per-batch ba-
sis (the default batch size is 128 chunks). Also, to speed up
downloads, the cloud keeps an in-memory least-recently-used
cache (256 MiB by default) to hold the recently accessed
containers. For each container access request issued by the
enclave (§4.5), the cloud first checks the cache and retrieves
the containers from local storage only if they are not in cache.
Limitations. DEBE currently does not address crash con-
sistency. We now discuss how to extend DEBE with crash
consistency, and pose the implementation as future work.

When a system crash occurs, DEBE would lose its in-
enclave contents (i.e., the query key, the data key, the CM-
Sketch, the top-k index, and the in-memory container pending
to be persisted into the storage pool). We can extend DEBE to
recover the query and data keys, the CM-Sketch, and the top-k
index via sealing, an SGX feature that encrypts in-enclave
content for secure out-enclave storage on disk [41]. When
the enclave is bootstrapped (§3.1), DEBE stores a persistent
copy of both the query key and data key by sealing. Also, it
makes periodic snapshots of the CM-Sketch and top-k index
by sealing. To restore the enclave states from a system crash,
the cloud re-initializes the enclave by unsealing the keys and
snapshots back to the enclave.

To realize crash consistency, we can augment DEBE with
write-ahead logging [61] to record updates in on-disk logs
before updating the in-memory CM-Sketch and top-k index.
To recover from the data loss of the in-memory container,
the enclave can log the IDs of the persisted containers for
the currently uploaded file in on-disk logs. If a system crash
occurs during the current upload, DEBE can roll back to the
state before the upload starts based on the logs. It finally
notifies the client to re-upload the file. Note that logging
the changes into on-disk logs would incur extra OCalls. To
mitigate the context switching overhead of logging, we can

batch multiple logging operations in a single OCall.
We can initialize a new CM-Sketch and a new top-k in-

dex after enclave recovery. This would not affect the storage
savings from deduplication, provided that the full index is
crash-consistent (e.g., via its implementation in a persistent
key-value store) and tracks all currently stored non-duplicate
chunks. However, DEBE incurs extra performance overhead,
as it cannot learn frequent chunks and hence incurs more
OCalls to build the top-k index from scratch.

6 Evaluation
We deploy DEBE in a local cluster of 11 machines connected
with 10 GbE. Each machine has a quad-core 3.4 GHz Intel
Core i5-7500 CPU and 32 GiB RAM, and is installed with
Ubuntu 16.04. We deploy one or multiple clients, a key server
(for DaE only), or a cloud storage backend on distinct ma-
chines. The machine for the cloud storage backend is attached
with a TOSHIBA DT01ACA 1 TiB 7200 rpm SATA hard disk.
By default, DEBE sets k =512 K for the top-k index and con-
figures the CM-Sketch with r =4 and w =256 K, so as to
keep the overall EPC usage within 64 MiB to limit the paging
overhead in SGX. Note that we can tune the parameters based
on the available EPC size.

We evaluate DEBE using both synthetic and real-world
datasets. We summarize our evaluation results as follows.

• DEBE accelerates the uploads of non-duplicate and du-
plicate data of state-of-the-art DaE approaches by up to
10.09× and 13.08×, respectively (Exp#1). Its frequency-
based deduplication only takes 5.8-18.4% of the overall
upload time (Exp#2). It preserves high performance for
multi-client uploads/downloads (Exp#3) and various syn-
thetic workloads (Exp#4).

• For real-world workloads, DEBE achieves 1.17-2.76×
speedups over state-of-the-art deduplication alternatives
(Exp#5), and preserves high performance in long-term up-
loads and downloads (Exp#6).

In our technical report [81], we present additional evalua-
tion results and show that DEBE achieves high storage savings
and preserves security against frequency analysis.

6.1 Datasets
Synthetic datasets. We consider two synthetic datasets for
our evaluation. The first dataset, namely SYN-Unique, in-
cludes non-duplicate and individually compressible chunks.
Specifically, we generate SYN-Unique as a set of 2 GiB com-
pressible files via the LZ data generator [38], which generates
synthetic data based on SDGen [34]. The LZ data gener-
ator takes two parameters as inputs: (i) a compression ra-
tio, which specifies the compressibility of the generated data,
and (ii) a random seed for data generation. We configure the
compression ratio as 2 to resemble real-world backup work-
loads [77], and vary the random seeds to generate distinct
synthetic files. We perform chunking on each synthetic file

to ensure that its chunks are globally unique over all files.
We use the dataset for stress-testing different schemes with
non-duplicate chunks.

The second dataset, namely SYN-Freq, includes the original
chunks (before deduplication) following a target frequency
distribution. We build a synthetic file generator that gener-
ates files whose chunk frequencies follow a Zipf distribution
as shown by prior work [83, 84]. Our generator takes three
parameters as inputs: (i) the number of original chunks, (ii)
the deduplication ratio (i.e., the ratio between the original
data size and the non-duplicate data size), and (iii) the Zipfian
constant (a larger constant implies higher skewness). To gen-
erate a synthetic file, we prepare a set of non-duplicate 48-bit
fingerprints based on the expected number of non-duplicate
chunks (i.e., the number of original chunks divided by the
deduplication ratio). We assign each fingerprint with a com-
pression ratio based on the normal distribution with a mean
of 2 and a variance of 0.25 [46, 77]. To generate each original
chunk, we sample its fingerprint from the fingerprint set based
on the target Zipf distribution, and construct its content using
the LZ data generator [38] with the compression ratio and fin-
gerprint (as the random seed) as inputs. Finally, we generate
the SYN-Freq dataset as a set of synthetic files, each of which
contains 13,107,200 8-KiB original chunks (i.e., 100 GiB)
and a deduplication ratio of 5×. The number of non-duplicate
chunks is large enough that only a subset of non-duplicate
chunks can be tracked by the top-k index.
Real-world datasets. We consider five real-world datasets of
backup workloads, which are also used in previous studies
for trace-driven evaluation [49, 50, 69, 70, 80, 86]:

• DOCKER: docker snapshots (from v4.1.0 to v7.0.0) of
Couchbase [17] from Docker Hub [22];

• LINUX: snapshots (from stable versions between v2.6.13
and v5.9) of Linux source code [54], in which each snapshot
is stored in the mtar format [53];

• FSL: home directory snapshots [29], among which we select
42 snapshots from nine users in 2013;

• MS: Windows file system snapshots [59], among which we
select 30 snapshots of size around 100 GiB each; and

• VM: virtual machine snapshots [50] collected by ourself.

Table 1 shows the statistics of the five real-world datasets.
Previous studies have shown that multi-tenant deduplication
can achieve higher storage savings than single-tenant dedu-
plication in FSL, MS, and VM [50, 59, 75]. Given the limited
available disk space in our testbed, we sample a subset of
snapshots from the original datasets [29, 59] for FSL and MS
as in [49]. As FSL, MS, and VM only contain fingerprints,
we generate compressible chunk contents as in SYN-Freq.

6.2 Evaluation on Synthetic Data

To examine the maximum achievable performance without
disk I/O overhead, we load the synthetic files into each client’s
memory before each test and let the cloud store all post-

Dataset Raw size Snapshots Dedup Ratio Compress Ratio
DOCKER 70.2 GiB 94 4.2 1.7

LINUX 44.6 GiB 82 2.8 2.3
VM 3.0 TiB 660 33.4 2.0
FSL 3.0 TiB 42 8.2 2.0
MS 3.9 TiB 30 4.1 2.0

Table 1: Characteristics of real-world datasets.

deduplicated data in memory (we include the disk I/O over-
head in the evaluation in §6.3). We report the average results
over five runs and include the 95% confidence intervals based
on student’s t-distribution (except for line graphs).
Exp#1 (Overall performance). We evaluate the upload
(download) performance of overall systems. We consider a
single client that successively uploads the same 2 GiB file
from SYN-Unique twice. The client then downloads the same
file. We measure the upload (download) speed of each op-
eration. Our goal is to examine the maximum achievable
performance of all schemes for storing all non-duplicate data
and all duplicate data. Note that the file size is small here,
such that all fingerprints can be tracked in the top-k index in
DEBE (we consider large-scale datasets in §6.3).

We compare DEBE with three DaE approaches: (i) Dup-
LESS [7], which implements server-aided key management
based on OPRF (§2.1); (ii) TED [49], which generates the
key of each chunk based on lightweight hash computations
in the key server; and (iii) CE [23], the convergent encryp-
tion scheme (§2.1). To study the security overhead of DEBE,
we include plain deduplication (Plain), in which the client
uploads the plaintext chunks to the cloud for deduplication
and compression through a communication channel protected
by SSL/TLS. Unlike DEBE and Plain, the DaE schemes (i.e.,
DupLESS, TED, and CE) do not realize compression due to
incompatibility (§2.1). For fair comparisons, we re-implement
all baselines based on their original papers under the same
implementation setting (§5) in C++.

Figure 5(a) shows the upload speeds. DEBE outperforms
all DaE schemes. When uploading non-duplicate data, DEBE
achieves 10.09×, 1.42×, and 1.25× speedups over DupLESS,
TED, and CE, respectively, by avoiding the generation of
chunk-based keys (note that DupLESS has very low up-
load speeds due to the expensive OPRF operations). Even
though DEBE applies compression, its compression overhead
is masked by the performance gain over the key generation
overhead of DaE. When uploading duplicate data, DEBE be-
comes more efficient. Its speedups increase to 13.08×, 1.88×,
and 1.65× over DupLESS, TED, and CE, respectively, since
it avoids performing encryption and compression on the du-
plicate chunks. Compared with plain deduplication, DEBE
only incurs 21.6% and 7.4% performance overhead for the
uploads of non-duplicate and duplicate data, respectively.

Figure 5(b) shows the download speeds. All DaE schemes
follow the same download paradigm, in which the client re-
trieves both ciphertext chunks and encrypted chunk-based
keys from the cloud, decrypts each key and the corresponding

22

156 178
222

283

23

160 182

301
325

 0

100

200

300

400

DupLESS TED CE DEBE Plain

S
p
e
e
d
 (

M
iB

/s
) Upload-Unique Upload-Duplicate

646
706

785

 0

300

600

900

DEBE DaE Plain

S
p
e
e
d
 (

M
iB

/s
)

(a) Upload (b) Download

Figure 5: (Exp#1) Overall performance.

Steps 1st upload 2nd upload
Chunking 0.61 ± 0.01 ms

Transmission Protection 0.37 ± 0.01 ms
Fingerprinting 2.27 ± 0.04 ms

Frequency tracking 0.06 ± 0.01 ms
First-phase dedup 0.10 ± 0.01 ms 0.14 ± 0.01 ms

Second-phase dedup 0.80 ± 0.02 ms -
Compression 0.67 ± 0.01 ms -
Encryption 0.33 ± 0.01 ms -

Table 2: (Exp#2) Breakdown of computational time per processing
1 MiB data in two successive uploads.

chunk, and reconstructs the original file. Compared with DaE,
DEBE incurs 8.5% download speed drop due to the OCalls
for moving chunks into the enclave for decryption and de-
compression (§4.5). Also, DEBE and DaE have 17.7% and
10.1% download speed drops compared with Plain, respec-
tively, since they perform decryption on retrieved chunks.
Exp#2 (Upload breakdown). We study the breakdown of
the upload performance. We consider the same scenario as
Exp#1 (i.e., a client successively uploads the same 2 GiB file
from SYN-Unique twice) and measure the computational
time of the client and the enclave in different steps in uploads:
(i) chunking, in which the client partitions the input file into
plaintext chunks; (ii) transmission protection, in which the
enclave exchanges a session key with the client and decrypts
received ciphertext chunks; (iii) fingerprinting, in which the
enclave computes the fingerprint of each plaintext chunk;
(iv) frequency tracking, in which the enclave estimates the
frequency of each plaintext chunk via the CM-Sketch; (v)
first-phase deduplication, in which the enclave removes dupli-
cate plaintext chunks via the top-k index; (vi) second-phase
deduplication, in which the enclave queries the full index via
OCalls to remove remaining duplicates; (vii) compression,
in which the enclave compresses the non-duplicate chunks;
and (viii) encryption, in which the enclave encrypts the com-
pressed chunks with the data key.

Table 2 shows the results (measured by the computational
time per 1 MiB of uploads). In the first upload (i.e., up-
loading non-duplicate data), fingerprinting is the most time-
consuming step since it performs expensive computations on
all chunks. On the other hand, frequency-based deduplication
(including frequency tracking plus first-phase and second-
phase deduplication) takes only 18.4% of the overall time.
Note that since the storage is empty before the upload, each
non-duplicate chunk is treated as a frequent chunk and exam-
ined by both the first-phase and second-phase deduplication.

 0
 200
 400
 600
 800
1000

 1 5 10 15 20
Number of Clients

Sp
ee

d
(M

iB
/s

)

Upload Download

Figure 6: (Exp#3) Multi-client
uploads and downloads.

 0

100

200

300

0.8 0.9 1 1.1
Zipfian Constant

Sp
ee

d
(M

iB
/s

)

128K
256K

512K
768K

1M
2M

Figure 7: (Exp#4) Impact of fre-
quency distribution.

In the second upload (i.e., uploading duplicate data), all du-
plicate chunks are removed by the first-phase deduplication
and hence the second-phase deduplication is skipped. In this
case, frequency-based deduplication takes only 5.8% of the
overall upload time.
Exp#3 (Multi-client uploads and downloads). We evaluate
DEBE when multiple clients issue upload/download requests
concurrently. In addition to the cloud, we deploy 10 machines,
with two client instances each, so as to simulate the concurrent
uploads/downloads by up to 20 clients. Each client uploads a
2 GiB synthetic file from SYN-Unique to the cloud, and then
downloads the same 2 GiB file. We measure the aggregate
upload (download) speed as the ratio of the total uploaded
(downloaded) data size to the total time all clients complete
the uploads (downloads).

Figure 6 shows the results versus the number of clients.
The aggregate upload speed first increases with the number
of clients and reaches 791.1 MiB/s for 10 clients, followed
by dropping to 755.8 MiB/s for 20 clients due to the resource
contention in the enclave. The aggregate download speed has
a similar trend, and first increases to 870.0 MiB/s and finally
drops to 835.7 MiB/s.
Exp#4 (Impact of frequency distribution). We evaluate
DEBE on processing the chunks from different frequency
distributions. We configure a single client to upload each orig-
inal chunk of SYN-Freq without chunking, and measure the
computational speed of the enclave (i.e., including the steps
of Table 2 except chunking).

Figure 7 shows the results for different k in the top-k index
versus the Zipfian constant. A larger k implies lower perfor-
mance for all Zipfian constants, since SGX incurs significant
paging overhead when the size of enclave contents is greater
than 64 MiB [45]. For example, when the Zipfian constant is
0.8, the computational speeds for k =512 K and k =1 M are
282.5 MiB/s and 147.3 MiB/s, respectively. In addition, the
computational speed of the enclave increases in more skewed
distribution (i.e., a larger Zipfian constant), since the most
frequent chunks contribute more duplicates. This mitigates
the OCall overhead of querying the full index.

6.3 Evaluation on Real-world Traces

Exp#5 (Performance of deduplication approaches).
DEBE’s key design is frequency-based deduplication, and
we compare it with other design alternatives. We consider two
state-of-the-art memory-efficient deduplication approaches,

namely similarity-based deduplication [9] and locality-based
deduplication [52]. Both approaches store a small in-enclave
fingerprint index based on the feature of each segment of
chunks and perform deduplication by loading a portion of
the full index (outside the enclave) into the enclave based
on the matched feature. Similarity-based deduplication de-
rives the feature based on the minimum chunk fingerprint of
each segment of chunks, while locality-based deduplication
generates it by sampling a few fingerprints. As in [9, 52], we
choose the segment size as 10 MiB, and the sampling rate of
locality-based deduplication as 1/64. While both approaches
aim to mitigate disk I/O in plain deduplication, our idea is
that they can also be applied to reduce EPC usage, but can
only support near-exact deduplication (§4.4).

In addition to the above near-exact deduplication ap-
proaches, we include the naı̈ve but exact deduplication base-
lines for comparisons. Specifically, in-enclave deduplication
attempts to manage the full index in the enclave; when the
full index increases in size and cannot fit into the EPC, it
triggers page swapping to evict unused EPC pages to memory.
Out-enclave deduplication manages the full index in memory,
and detects duplicates by issuing OCalls to the full index. For
fair comparisons, we include compression over non-duplicate
chunks into all baseline approaches. We upload the snapshots
of each real-world backup dataset (§6.1) in the order of their
creation times. We measure the computational speed of the
enclave as in Exp#4.

Figure 8 shows the results. DEBE generally outperforms all
approaches. For example, in FSL, it achieves 1.17×, 1.20×,
1.25×, and 2.76× average speedups over the similarity-based,
locality-based, out-enclave, and in-enclave approaches, re-
spectively. The reason is that DEBE avoids the extra compu-
tational overhead of compressing and encrypting some du-
plicate chunks in both similarity-based and locality-based
approaches (which perform near-exact deduplication). Also,
it performs the first-phase deduplication and filters out many
queries to the full index, thereby mitigating the OCall over-
head of the out-enclave deduplication. Although in-enclave
deduplication outperforms DEBE when the workload size
is small (e.g., the first few snapshots in DOCKER and
LINUX), its performance drops dramatically in subsequent
snapshots due to expensive paging overhead. DEBE manages
lightweight data structures (a CM-Sketch and the small top-k
index) in the enclave and mitigates the paging overhead.
Exp#6 (Trace-driven upload and download). Unlike in
Exp#1, we evaluate the upload and download performance of
DEBE based on real-world data. We enable cloud-side disk
I/O, upload all snapshots of each dataset, and finally let the
client download them on disk. Here, we only compare DEBE
with CE, which is the fastest DaE approach. Since FSL, VM,
and MS only include the compressible chunks (§6.1), we let
the client machine directly upload chunks without chunking.

Figure 9 shows the speeds for uploading and download-
ing each snapshot in DEBE and CE. The upload speed of

DEBE similarity-based locality-based in-enclave out-enclave

 0
100
200
300
400

 1 20 40 60 80 94
Snapshot

Sp
ee

d
(M

iB
/s

)

 0
100
200
300
400

 1 20 40 60 82
Snapshot

Sp
ee

d
(M

iB
/s

)

 0
100
200
300
400

 1 250 500 660
Snapshot

Sp
ee

d
(M

iB
/s

)

 0
100
200
300
400

 1 10 20 30 42
Snapshot

Sp
ee

d
(M

iB
/s

)

 0
100
200
300
400

 1 10 20 30
Snapshot

Sp
ee

d
(M

iB
/s

)

(a) DOCKER (b) LINUX (c) VM (d) FSL (e) MS

Figure 8: (Exp#5) Performance comparison of different deduplication approaches.

DEBE-Upload DEBE-Download CE-Upload CE-Download

 0

100

200

300

 1 20 40 60 80 94
Snapshot

Sp
ee

d
(M

iB
/s

)

 0

100

200

300

 1 20 40 60 82
Snapshot

Sp
ee

d
(M

iB
/s

)

 0

100

200

300

 1 250 500 660
Snapshot

Sp
ee

d
(M

iB
/s

)

 0

100

200

300

 1 10 20 30 42
Snapshot

Sp
ee

d
(M

iB
/s

)

 0

100

200

300

 1 10 20 30
Snapshot

Sp
ee

d
(M

iB
/s

)

(a) DOCKER (b) LINUX (c) VM (d) FSL (e) MS

Figure 9: (Exp#6) Trace-driven upload and download performance.

DEBE gradually increases in subsequent snapshots, which
include more duplicate plaintext chunks, so DEBE does not
need to perform compression and encryption on the dupli-
cate plaintext chunks (removed by deduplication). In contrast,
CE is consistently slower than DEBE in uploads, as it per-
forms key generation and encryption for all duplicate plaintext
chunks. For example, in FSL, the upload speed of DEBE is
246.5 MiB/s for the first snapshot, and reaches 277.5 MiB/s
for the last snapshot. In contrast, the upload speed of CE is
163.5-179.1 MiB/s across all snapshots.

The download speeds of both DEBE and CE are almost
the same, since they are throttled by disk I/O. Also, their
download speeds decrease across snapshots due to chunk
fragmentation [51] (i.e., the chunks of subsequent snapshots
become scattered after deduplication), which increases I/O
overhead. For example, the download speed of DEBE in FSL
is 131.4 MiB/s for the first snapshot, and drops to 95.1 MiB/s
for the last snapshot (the download speed of CE is almost the
same). Chunk fragmentation can be mitigated via existing
approaches [11, 12, 31, 51, 86] and we pose the integration of
such approaches into DEBE as future work.

7 Related Work
DaE approaches. Several approaches realize secure dedu-
plication via DaE. In addition to those described in §2.1,
some approaches are designed from the security perspectives.
Random MLE [1] and iMLE [6] apply non-deterministic en-
cryption to prevent frequency leakage, but they use expensive
primitives (e.g., non-interactive zero-knowledge proofs [1],
fully homomorphic encryption [6]) that are not ready to be
implemented. Liu et al. [55] propose to share keys via a de-
centralized agreement protocol without relying on a dedicated
key server, but it introduces expensive performance overhead
of interactions among different clients. TED [49] mitigates
frequency leakage with a configurable storage blowup. In con-
trast, DEBE realizes DbE to address both key management
overhead and security issues simultaneously.

SGX meets secure deduplication. SGX has been used in
secure deduplication. Dang et al. [20] employ SGX as a
trusted proxy to save network bandwidth for secure dedupli-
cation. SPEED [19] performs deduplication for computations
inside the enclave to improve resource utilization. You et
al. [82] leverage SGX to verify the ownership of dedupli-
cated data for secure deduplication. SeGShare [32] builds on
a server-side enclave for file-based deduplication, but does not
consider fingerprint indexing for chunk-based deduplication.
S2Dedup [60] uses a server-side enclave to eliminate a trusted
key server for key generation, and it performs deduplication
outside the enclave via re-encrypting chunks; in contrast,
DEBE directly performs deduplication inside the enclave to
protect plaintext chunks. SGXDedup [70] leverages SGX to
improve the performance of client-side secure deduplication
under DaE. Note that the above SGX-based deduplication
approaches are still based on DaE.

8 Conclusion
DEBE realizes an unexplored paradigm, deduplication-before-
encryption (DbE), for secure deduplicated storage. It builds
on SGX and applies frequency-based deduplication to man-
age a small fingerprint index for most frequent chunks in
the enclave. We show that DEBE outperforms conventional
deduplication-after-encryption (DaE) approaches in perfor-
mance, storage savings, and security.

Acknowledgments
We thank our reviewers and shepherd for their comments. This
work was supported in part by the National Natural Science
Foundation of China (61972073), the Key Research Funds
of Sichuan Province (2021YFG0167, 2020YFG0298), the
Sichuan Science and Technology Program (2020JDTD0007),
the Fundamental Research Funds for Chinese Central Univer-
sities (ZYGX2020ZB027, ZYGX2021J018), CUHK Direct
Grant (4055148), and the Research Matching Grant Scheme.

References
[1] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan,

and G. Segev. Message-locked encryption for lock-
dependent messages. In Proc. of CRYPTO, 2013.

[2] Advanced Micro Devices Inc. AMD Secure Encrypted
Virtualization (SEV). https://developer.amd.com/
sev/.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE: Feder-
ated, available, and reliable storage for an incompletely
trusted environment. In Proc. of USENIX OSDI, 2002.

[4] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Inno-
vative technology for CPU based attestation and sealing.
In Proc. of ACM HASP, 2013.

[5] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’keeffe, M. L.
Stillwell, et al. SCONE: Secure Linux containers with
Intel SGX. In Proc. of USENIX OSDI, 2016.

[6] M. Bellare and S. Keelveedhi. Interactive message-
locked encryption and secure deduplication. In Proc. of
PKC, 2015.

[7] M. Bellare, S. Keelveedhi, and T. Ristenpart. DupLESS:
Server-aided encryption for deduplicated storage. In
Proc. of USENIX Security, 2013.

[8] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-
locked encryption and secure deduplication. In Proc. of
EuroCrypto, 2013.

[9] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillibridge.
Extreme binning: Scalable, parallel deduplication for
chunk-based file backup. In Proc. of IEEE MASCOTS,
2009.

[10] J. Black. Compare-by-hash: A reasoned analysis. In
Proc. of USENIX ATC, 2006.

[11] Z. Cao, S. Liu, F. Wu, G. Wang, B. Li, and D. H. Du.
Sliding look-back window assisted data chunk rewriting
for improving deduplication restore performance. In
Proc. of USENIX FAST, 2019.

[12] Z. Cao, H. Wen, F. Wu, and D. H. Du. ALACC: Accel-
erating restore performance of data deduplication sys-
tems using adaptive look-ahead window assisted chunk
caching. In Proc. of USENIX FAST, 2018.

[13] D. Chen, M. Factor, D. Harnik, R. Kat, and E. Tsfadia.
Length preserving compression: Marrying encryption
with compression. In Proc. of ACM SYSTOR, 2021.

[14] Cohesity Inc. Cohesity. https://

www.cohesity.com/.

[15] Y. Collet. LZ4: Extremely fast compression algorithm.
https://lz4.github.io/lz4/.

[16] G. Cormode and S. Muthukrishnan. An improved data
stream summary: The count-min sketch and its applica-
tions. Journal of Algorithms, 55(1):58–75, 2005.

[17] Couchbase Inc. Couchbase: The modern database for en-
terprise applications. https://www.couchbase.com.

[18] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:
Making backup cheap and easy. In Proc. of USENIX
OSDI, 2002.

[19] H. Cui, H. Duan, Z. Qin, C. Wang, and Y. Zhou. SPEED:
Accelerating enclave applications via secure deduplica-
tion. In Proc. of IEEE ICDCS, 2019.

[20] H. Dang and E.-C. Chang. Privacy-preserving data
deduplication on trusted processors. In Proc. of IEEE
CLOUD, 2017.

[21] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schi-
avoni, P. Felber, and D. Hagimont. Everything you
should know about Intel SGX performance on virtual-
ized systems. In Proc. of ACM SIGMETRICS, 2019.

[22] Docker Inc. Docker Hub. https://hub.docker.com/.

[23] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and
M. Theimer. Reclaiming space from duplicate files in
a serverless distributed file system. In Proc. of IEEE
ICDCS, 2002.

[24] Dropbox Inc. Dropbox. https://www.dropbox.com/.

[25] Druva Inc. Druva. https://www.druva.com/.

[26] A. Duggal, F. Jenkins, P. Shilane, R. Chinthekindi,
R. Shah, and M. Kamat. Data domain cloud tier: Backup
here, backup there, deduplicated everywhere! In Proc.
of USENIX ATC, 2019.

[27] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and
S. Sengupta. Primary data deduplication-large scale
study and system design. In Proc. of USENIX ATC,
2012.

[28] E. Feng, X. Lu, D. Du, B. Yang, X. Jiang, Y. Xia,
B. Zang, and H. Chen. Scalable memory protection
in the PENGLAI enclave. In Proc. of USENIX OSDI,
2021.

[29] File System and Storage Lab at Stony Brook Univer-
sity. Traces and snapshots public archive. http:

//tracer.filesystems.org.

[30] K. Fu, S. Kamara, and T. Kohno. Key regression: En-
abling efficient key distribution for secure distributed
storage. In Proc. of NDSS, 2006.

[31] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,
F. Huang, and Q. Liu. Accelerating restore and garbage
collection in deduplication-based backup systems via
exploiting historical information. In Proc. of USENIX
ATC, 2014.

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.cohesity.com/
https://www.cohesity.com/
https://lz4.github.io/lz4/
https://www.couchbase.com
https://hub.docker.com/
https://www.dropbox.com/
https://www.druva.com/
http://tracer.filesystems.org
http://tracer.filesystems.org

[32] B. Fuhry, L. Hirschoff, S. Koesnadi, and F. Kerschbaum.
SeGShare: Secure group file sharing in the cloud using
enclaves. In Proc. of IEEE/IFIP DSN, 2020.

[33] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of computer and system sciences, 1984.

[34] R. Gracia-Tinedo, D. Harnik, D. Naor, D. Sotnikov,
S. Toledo, and A. Zuck. SDGen: Mimicking datasets
for content generation in storage benchmarks. In Proc.
of USENIX FAST, 2015.

[35] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side chan-
nels in cloud services: Deduplication in cloud storage.
IEEE Security & Privacy, 8(6):40–47, 2010.

[36] D. Harnik, E. Tsfadia, D. Chen, and R. Kat. Securing
the storage data path with SGX enclaves. https://

arxiv.org/abs/1806.10883, 2018.

[37] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In Proc. of ACM HASP,
2013.

[38] J. Ibsen. LZ data generator. https://github.com/
jibsen/lzdatagen.

[39] Intel Corporation. Intel(R) Advanced En-
cryption Standard Instructions (AES-NI).
https://software.intel.com/content/www/
us/en/develop/articles/intel-advanced-

encryption-standard-instructions-aes-

ni.html.

[40] Intel Corporation. Intel(R) SHA Extensions.
https://software.intel.com/content/
www/us/en/develop/articles/intel-sha-

extensions.html.

[41] Intel Corporation. Intel(R) Software Guard Extensions.
https://software.intel.com/content/www/us/
en/develop/documentation/sgx-developer-

guide/top.html.

[42] Intel Corporation. Intel(R) Software Guard Exten-
sions SDK for Linux. https://01.org/intel-
softwareguard-extensions.

[43] Intel Corporation. Intel(R) Software Guard Exten-
sions SSL. https://github.com/intel/intel-
sgx-ssl.

[44] Intel Corporation. Supporting Intel SGX on multi-socket
platforms. https://www.intel.com/content/
www/us/en/architecture-and-technology/

software-guard-extensions/supporting-sgx-

on-multi-socket-platforms.html.

[45] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh. ShieldStore:
Shielded in-memory key-value storage with SGX. In
Proc. of ACM EuroSys, 2019.

[46] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and
G. Wallace. Nitro: A capacity-optimized SSD cache for
primary storage. In Proc. of USENIX ATC, 2014.

[47] J. Li, P. P. C. Lee, Y. Ren, and X. Zhang. Metadedup:
Deduplicating metadata in encrypted deduplication via
indirection. In Proc. of IEEE MSST, 2019.

[48] J. Li, P. P. C. Lee, C. Tan, C. Qin, and X. Zhang. Informa-
tion leakage in encrypted deduplication via frequency
analysis: Attacks and defenses. ACM Trans. on Storage,
16(1):1–30, 2020.

[49] J. Li, Z. Yang, Y. Ren, P. P. C. Lee, and X. Zhang. Bal-
ancing storage efficiency and data confidentiality with
tunable encrypted deduplication. In Proc. of ACM Eu-
roSys, 2020.

[50] M. Li, C. Qin, and P. P. C. Lee. CDStore: Toward reli-
able, secure, and cost-efficient cloud storage via conver-
gent dispersal. In Proc. of USENIX ATC, 2015.

[51] M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving
restore speed for backup systems that use inline chunk-
based deduplication. In Proc. of USENIX FAST, 2013.

[52] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezis, and P. Camble. Sparse indexing: Large scale,
inline deduplication using sampling and locality. In
Proc. of USENIX FAST, 2009.

[53] X. Lin, F. Douglis, J. Li, X. Li, R. Ricci, S. Smaldone,
and G. Wallace. Metadata considered harmful ... to
deduplication. In Proc. of USENIX HotStorage, 2015.

[54] Linux Foundation. The Linux kernel archives. https:
//www.kernel.org/.

[55] J. Liu, N. Asokan, and B. Pinkas. Secure deduplication
of encrypted data without additional independent servers.
In Proc. of ACM CCS, 2015.

[56] U. Maurer. Modelling a public-key infrastructure. In
Proc. of ESORICS, 1996.

[57] M. Meehan. Data privacy will be the most important
issue in the next decade. https://www.forbes.com/
sites/marymeehan/2019/11/26/data-privacy-

will-be-the-most-important-issue-in-the-

next-decade/.

[58] Memopal. Memopal. https://www.memopal.com/.

[59] D. T. Meyer and W. J. Bolosky. A study of practical
deduplication. In Proc. of USENIX FAST, 2011.

[60] M. Miranda, T. Esteves, B. Portela, and J. Paulo.
S2Dedup: SGX-enabled secure deduplication. In Proc.
of ACM SYSTOR, 2021.

[61] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. on Database
Systems, 17(1):94–162, 1992.

https://arxiv.org/abs/1806.10883
https://arxiv.org/abs/1806.10883
https://github.com/jibsen/lzdatagen
https://github.com/jibsen/lzdatagen
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.kernel.org/
https://www.kernel.org/
https://www.forbes.com/sites/marymeehan/2019/11/26/data-privacy-will-be-the-most-important-issue-in-the-next-decade/
https://www.forbes.com/sites/marymeehan/2019/11/26/data-privacy-will-be-the-most-important-issue-in-the-next-decade/
https://www.forbes.com/sites/marymeehan/2019/11/26/data-privacy-will-be-the-most-important-issue-in-the-next-decade/
https://www.forbes.com/sites/marymeehan/2019/11/26/data-privacy-will-be-the-most-important-issue-in-the-next-decade/
https://www.memopal.com/

[62] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber,
and E. Weippl. Dark clouds on the horizon: Using cloud
storage as attack vector and online slack space. In Proc.
of USENIX Security, 2011.

[63] M. Naor and O. Reingold. Number-theoretic construc-
tions of efficient pseudo-random functions. Journal of
the ACM, 51(2):231–262, 2004.

[64] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and
C. Fetzer. Varys: Protecting SGX enclaves from prac-
tical side-channel attacks. In Proc. of USENIX ATC,
2018.

[65] OpenSSL. Cryptography and SSL/TLS toolkit. https:
//www.openssl.org/.

[66] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein.
Eleos: Exitless OS services for SGX enclaves. In Proc.
of ACM EuroSys, 2017.

[67] S. Pinto and N. Santos. Demystifying ARM TrustZone:
A comprehensive survey. ACM Computing Surveys,
51(6):1–36, 2019.

[68] R. A. Popa, C. M. Redfield, N. Zeldovich, and H. Bal-
akrishnan. CryptDB: Protecting confidentiality with
encrypted query processing. In Proc. of SOSP, 2011.

[69] C. Qin, J. Li, and P. P. C. Lee. The design and imple-
mentation of a rekeying-aware encrypted deduplication
storage system. ACM Trans. on Storage, 13(1):1–30,
2017.

[70] Y. Ren, J. Li, Z. Yang, P. P. C. Lee, and X. Zhang. Ac-
celerating encrypted deduplication via SGX. In Proc. of
USENIX ATC, 2021.

[71] Seagate Technology LLC. Data Age 2025. https:

//www.seagate.com/files/www-content/our-
story/trends/files/idc-seagate-dataage-

whitepaper.pdf.

[72] P. Shah and W. So. Lamassu: Storage-efficient host-side
encryption. In Proc. of USENIX ATC, 2015.

[73] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voru-
ganti. iDedup: Latency-aware, inline data deduplication
for primary storage. In Proc. of USENIX FAST, 2012.

[74] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller.
Secure data deduplication. In Proc. of ACM StorageSS,
2008.

[75] Z. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov,
N. Xiao, et al. A long-term user-centric analysis of
deduplication patterns. In Proc. of IEEE MSST, 2016.

[76] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-
order execution. In Proc. of USENIX Security, 2018.

[77] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu. Characteristics of backup
workloads in production systems. In Proc. of USENIX
FAST, 2012.

[78] O. Weisse, V. Bertacco, and T. Austin. Regaining lost
cycles with HotCalls: A fast interface for SGX secure
enclaves. In Proc. of ACM ISCA, 2017.

[79] Z. Wilcox-O’Hearn and B. Warner. Tahoe: The least-
authority filesystem. In Proc. of ACM StorageSS, 2008.

[80] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu,
Q. Liu, and Y. Zhang. FastCDC: A fast and efficient
content-defined chunking approach for data deduplica-
tion. In Proc. of USENIX ATC, 2016.

[81] Z. Yang, J. Li, and P. P. C. Lee. Secure and lightweight
deduplicated storage via shielded deduplication-before-
encryption. Technical report, The Chinese University
of Hong Kong, 2022. http://www.cse.cuhk.edu.hk/
~pclee/www/pubs/tech debe.pdf.

[82] W. You and B. Chen. Proofs of ownership on encrypted
cloud data via Intel SGX. In Proc. of ACNS, 2020.

[83] W. Zhang, D. Agun, T. Yang, R. Wolski, and H. Tang.
VM-centric snapshot deduplication for cloud data
backup. In Proc. of IEEE MSST, 2015.

[84] W. Zhang, H. Tang, H. Jiang, T. Yang, X. Li, and Y. Zeng.
Multi-level selective deduplication for VM snapshots in
cloud storage. In Proc. of IEEE CLOUD, 2012.

[85] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file system.
In Proc. of USENIX FAST, 2008.

[86] X. Zou, J. Yuan, P. Shilane, W. Xia, H. Zhang, and
X. Wang. The dilemma between deduplication and
locality: Can both be achieved? In Proc. of USENIX
FAST, 2021.

A Artifact Appendix
Abstract
Our artifact consists of the prototypes of DEBE and all base-
line approaches, a trace analysis tool for frequency leakage
measurement, and the scripts to run all our experiments in §6.
The DEBE prototype is a shielded DbE-based deduplicated
storage system that supports secure deduplication via Intel
SGX. It supports upload/download operations to allow multi-
ple clients to securely outsource their data storage to the cloud.
It applies frequency-based deduplication and implements the
designs described in §4.

Scope
Our artifact can be used to validate our main claim that DEBE
outperforms conventional DaE approaches in performance,
storage efficiency, and security. Specifically, our artifact can
be used to validate the results shown in the figures and tables

https://www.openssl.org/
https://www.openssl.org/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_debe.pdf
http://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_debe.pdf

in §6 to support our main claim. In addition, our artifact can
be used to run the workloads independent of our evaluation
in §6.

Contents
The artifact comprises the following sub-directories:
• ./Prototype, which includes the implementation of the
DEBE prototype.

• ./Baseline, which includes the implementation of all
baseline approaches (e.g., DupLESS, TED, CE, and Plain)
used in Exp#1 and Exp#6.

• ./Sim, which includes a trace analysis tool to measure
frequency leakage of CE, TED, and DEBE (see Exp#9 in
our technical report [81]).
Also, each sub-directory has a separate README file to

introduce the build instructions and usage.

Hosting
Our artifact is available on GitHub. Users can obtain the arti-
fact from the repository https://github.com/yzr95924/
DEBE. The version we provided for the artifact evalua-
tion is marked with the atc22ae tag. We encourage the
users to use the latest version of the repository, since it
may include bug fixes. We also release the traces used in
§6. The README file (https://github.com/yzr95924/
DEBE/blob/master/README.md) describes the detailed in-
structions to collect the traces.

Requirements
We developed and evaluated our artifact on a local cluster
of 11 machines connected with 10 GbE. Each machine has
a quad-core 3.4 GHz Intel Core i5-7500 CPU and 32 GiB
RAM running Ubuntu 16.04. We implement DEBE based on
Intel SGX SDK Linux 2.7 [42], OpenSSL 1.1.1 [65], and
Intel SGX SSL 1.1.1 [43]. The DEBE prototype is writ-
ten in C++ and compiled by Clang 3.8.0. To validate the
basic upload/download operations of DEBE, users need to
prepare at least two machines, one of which needs to sup-
port Intel SGX to run as the cloud. We recommend users to
check the SGX-supported device in https://github.com/
ayeks/SGX-hardware.

Note that if the user’s OS version is higher than Ubuntu
16.04 LTS (e.g., Ubuntu 20.04 LTS), it might not be able to
install the packages with the same versions as in our paper.
Nevertheless, we expect that the impact of using the packages
with newer versions would be limited and our prototype can
still run correctly.

Workflow
To reproduce the experiments in §6, users can refer to
./Prototype/ae instruction.md for the detailed instruc-
tions.

https://github.com/yzr95924/DEBE
https://github.com/yzr95924/DEBE
https://github.com/yzr95924/DEBE/blob/master/README.md
https://github.com/yzr95924/DEBE/blob/master/README.md
https://github.com/ayeks/SGX-hardware
https://github.com/ayeks/SGX-hardware

	Introduction
	Background and Motivation
	Limitations of Deduplication-after-Encryption
	Moving to Deduplication-before-Encryption
	Intel SGX

	Design Overview
	DEBE Architecture
	Threat Model
	Design Goals

	Detailed Design
	Main Idea
	Key Management
	Frequency Tracking
	Frequency-based Deduplication
	Storage Management
	Security Discussion

	Implementation
	Evaluation
	Datasets
	Evaluation on Synthetic Data
	Evaluation on Real-world Traces

	Related Work
	Conclusion
	Artifact Appendix

