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Abstract— A crucial requirement for Software Defined Net-
work (SDN) is that data plane forwarding behaviors should
always agree with control plane policies. Such requirement
cannot be met when there are forwarding anomalies, where
packets deviate from the paths specified by the controller. Most
anomaly detection methods for SDN install dedicated rules to
collect statistics of each flow, and check whether the statistics
conform to the “flow conservation principle”. We find these
methods have a limited detection scope: they look at one flow each
time, thus can only check a small number of flows simultaneously.
In addition, dedicated rules for statistics collection can impose
a large overhead on flow tables of SDN switches. To this end,
this paper presents FOCES, a network-wide forwarding anomaly
detection and localization method in SDN. Different from pre-
vious methods, FOCES applies a new kind of flow conservation
principle at network wide, and can check forwarding behaviors
of all flows in the network simultaneously, without installing any
dedicated rules. Finally, FOCES applies a voting-based method
to localize malicious switches when anomalies are detected.
Experiments with four network topologies show that FOCES can
achieve a detection precision higher than 90%, when the packet
loss rate is no larger than 10%, and a localization accuracy of
around 80% when the packet loss rate is no larger than 5%.

Index Terms— Software defined network, forwarding anomaly,
detection, localization.

I. INTRODUCTION
OFTWARE defined networking (SDN) promises a cen-
tralized, flexible, and programmable control of computer
networks [2]. In a typical SDN, a logically-centralized con-
troller compiles network policies (e.g., routing, access control,
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waypoint traversal) into forwarding rules, and installs them
at switches through a standard control channel (e.g., Open-
Flow [2]). Switches enforce these forwarding rules to realize
the network policies. A common and cost-effective way to
realize SDN is to use white-box switches [3], [4] running
third-party switch Operation Systems (OSes) [5]-[7].

Despite its huge benefits, SDN is still vulnerable to attacks.
Many real incidents indicate that switches and routers can
be compromised [8]-[10], and SDN is even more prone to
switch compromise [11]-[13]. A recent study shows that an
attacker can hack the boot loader of switch OSes, so as to gain
persistent control over SDN switches, even after the switch
OSes have been reinstalled [11], [14].

In addition, the control channel between the controller
and switches also lacks security protection. For OpenFlow,
SSL/TLS becomes optional rather than mandatory after ver-
sion 1.0 [15], and many SDN switch vendors just forgo this
feature. Benton et al. reported that only 2 out of 8 switches,
and 1 out of 8 controllers have full support of SSL/TLS [16].

The above security vulnerabilities often manifest at the
data plane as forwarding anomalies, i.e., packets deviate from
the paths that are specified by the controller. Forwarding
anomalies can cause violation of critical security policies, like
flow isolation and waypoint traversal. For example, the control
plane policy may require a specific flow go through a firewall,
while a forwarding anomaly can cause some or all packets of
this flow bypass the firewall. Note that SDN by itself provides
no means to detect forwarding anomalies due to its open-loop
control mode: the controller only sends rule installation mes-
sages to switches, while cannot ensure switches will correctly
install these rules, and forward according to these rules.

Recently, many data plane debugging tools are proposed to
test whether flow rules at switches are corresponding to the
controller’s view [17]-[19], or monitor whether the forwarding
behaviors of packets are compliant with the control plane poli-
cies [20], [21]. However, they assume switches are trustable,
thus cannot be used to detect forwarding anomalies as switches
can be compromised. Some tools have been proposed to detect
forwarding anomalies in SDN, and we broadly group them into
the following two classes.

Path verification tools let switches along the forwarding path
embed a cryptographic tag (e.g., MAC) so that the controller
can verify whether the actual paths took by packets are agree-
ing with what the controller expects [22]-[25]. However, these
tools need to modify switches to support cryptographic opera-
tions, which makes them not easy to be deployed. In addition,
they need extra header space for storing cryptographic infor-
mation, which can introduce high bandwidth overhead. For
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example, the bandwidth overhead of REV is 5.28% when the
average packet size is 757 Bytes, and the overhead can be even
higher for smaller packets [24].  Statistics verification tools
try to detect forwarding anomalies by passively collecting flow
statistics, and check whether the statistics conform to the flow
conservation principle, i.e., the counters along the forwarding
path of a flow should be roughly the same [26]-[28]. In
contrast to path verification tools, statistics verification tools
do not require any extra header space or switch modification,
and thus can be easily adopted by production networks.
However, rules in SDNs can have wildcard match fields (e.g.,
a destination IP prefix matching a set of flows), and thus the
counter of a flow rule can aggregate multiple flows. As a
result, these tools either cannot handle wildcard rules [26],
or have to install dedicated counter rules for collecting flow
statistics [27], [28], therefore placing large overhead on flow
table space. In addition, these tools only check the consistency
of counters for the set of flows being selected, and may miss
some forwarding anomalies happening to unselected flows
[26]-[28]. How to detect forwarding anomalies of all flows in
presence of wildcard rules without installing dedicated counter
rules is still an open problem.

To overcome the above limitations, this paper presents
FlOw-Counter Equation System (FOCES), a new approach
to forwarding anomaly detection and localization for SDN.
Generally speaking, FOCES belongs to statistics verification
methods. However, different from all the above methods that
apply the flow conservation principle for each individual
flow, FOCES works at a network-scale: it takes all flows as
a whole, and checks whether their counters are consistent
with the controller’s view. Specifically, FOCES models the
controller’s view (i.e., expected forwarding behaviors) with
Flow-Counter Matrix (FCM), which captures the relationship
between all flows and rules in the network. Then, FOCES
periodically collects the counters of all rules in the network,
and checks whether they can fit into what we call the flow-
counter equation system determined by the FCM. In this
sense, FOCES generalizes the flow conservation principle
from a single flow to a network of flows, and thus can
detect and localize forwarding anomalies at the network-wide
scale.

When designing FOCES, we are faced with the following
challenges. First, noises like packet losses may cause FOCES
to falsely flag the network under forwarding anomaly. We
show how to eliminate such false positives by designing a
threshold-based detection algorithm. Second, since FOCES
detects forwarding anomalies by taking all flows as a whole,
it is difficult to localize malicious switches that are account-
able, especially when there are packet losses. We design a
set of metrics for measuring accountability of switches, and
use voting to reduce the effect of packet losses. Finally,
FOCES needs to solve flow-counter equation systems by
computing matrix inversions, which can be costly when there
are a large number of flows and rules. To make FOCES
scalable, we propose to strategically slice the original large
FCM into a set of smaller sub-FCMs, each correspond-
ing to a switch. Then, we only need to solve a set of
equation systems, which are much smaller than solving the
original one.
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In sum, our contribution is four-fold:

o We propose FOCES, a network-wide forwarding anomaly
detection method in SDN, and theoretically analyze the
condition of successful detection.

o We design a threshold-based detection method to elimi-
nate false positives caused by counter noises, and make
FOCES scalable with matrix slicing.

o We design a voting-based localization method to identify
malicious switches that cause forwarding anomalies.

o We use experiments to show FOCES can detect and
localize forwarding anomalies with high accuracy, with
minimal computation and bandwidth overhead.

The rest of this paper proceeds as follows. Section II
states the problem of forwarding anomaly in SDN; Section III
presents the theoretic framework of FOCES; Section IV intro-
duces the detection algorithms of FOCES, followed by security
analysis; Section V introduces the localization algorithms of
FOCES; and Section VI evaluates the accuracy, performance,
and overhead of FOCES; Section VII discusses related work,
and Section VIII concludes.

II. PROBLEM STATEMENT
A. System Model

This paper considers a typical SDN, where a
logically-centralized controller manages a set of switches.
Network operators specify high-level policies such as
reachability and isolation with the API provided by the
controller. The controller breaks down the policies into a set
of rules, and populates the rules into flow tables of switches,
through a standard control channel like OpenFlow [2]. Each
rule consists of three parts: matching fields, actions, and
counters. Switches forward packets by looking up in their
flow tables. Specifically, when the header of a packet matches
the matching fields of a rule, the switch will take the actions
specified by the rule (e.g., forwarding to a port), and update
the corresponding counters. We assume the controller has
access to the complete network topology and can request
counters of rules from switches [15].

B. Threat Model

The adversary aims to change the paths that packets are
forwarded, thereby causing what we call forwarding anomaly.
Specifically, we consider the following types of forwarding
anomalies, as shown in Fig. 1.

Path Deviation: Packets take a different path than the one
specified by the controller. Besides general path deviations,
here we highlight two special cases:

o Switch Bypass. Packets are received by the destination
switch, but one or more switches are skipped.

o Path Detour. Packets deviate from one switch S; to
another switch other than the intended next-hop S;1,
and come back to S; later.

Early Drop: Packets are dropped before reaching the desti-
nation switch. Note here we implicitly assume the last-hop
switch should not drop packets while pretending to have
delivered them, which cannot be detected by any flow statistics
verification tools.
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Fig. 1. Tllustration of forwarding anomalies considered in this paper.

Finally, we do not consider anomalies which do not change
the forwarding paths of packets, such as traffic mirroring or
payload modification, since they can be defended using end-to-
end encryptions. Note the above definition is inspired by pre-
vious works on forwarding anomaly detection [22], [23], [29].

We assume the adversary can compromise switches by
exploiting the vulnerabilities of switch OS. Then, the adversary
has the following two avenues to cause forwarding anomalies.
(1) The adversary can modify output ports of forwarding rules
installed at the flow tables of compromised switches. Here,
we assume the adversary has full control of compromised
switches. Thus, when the controller tries to dump the flow
table of a compromised switch, the adversary can just report
the original flow table instead of the modified one. Thus, sim-
ply dumping flow tables is not effective. (2) The adversary can
directly forward any packets to any ports, without matching
any rules in the flow table, thereby also dismissing the method
of flow table dumping. In addition, we assume the adversary is
aware of our detection method, and can modify the counters
of rules at compromised switches, so as to pretend to have
correctly forwarded packets.

Finally, we assume the controller is always trusted, and the
majority of switches in the network are benign, i.e., forwarding
packets according to rules installed by the controller. Note
such “majority good” assumption is also necessary for other
statistics-based anomaly detection methods [26].

III. FOCES: THEORETIC FRAMEWORK

In this section, we will first present a brief introduction to
statistics verification tools, highlighting their limitations, and
then give an overview of FOCES. After that, we present the
theoretic framework of FOCES, which lays the foundation for
the detection and localization algorithms to be introduced in
Section IV and Section V, respectively.

A. Forwarding Anomaly Detection via Statistics Verification

We first show how to detect forwarding anomalies by
leveraging the “flow conservation principle”. Taking Fig. 1
as an example, suppose there is only one flow Sy — S; —
So — S5 (shown as the green solid line), which matches a
rule at each switch of the path. Ideally the counters of rules at
S0, S1, S2, S5 should all be equal to say a, conforming to the
flow conservation principle. Now, suppose S; is compromised
and diverts the flow to path S3 — Sy — S5 (shown as the red
dashed line), the counters at Sy and S; will still be a, while
the counter at So will be smaller than a, violating the flow
conservation principle.

Some statistics verification tools leverage the above idea
to detect forwarding anomalies in SDN [26]—-[28]. However,
these tools apply the flow conservation principle for each

Counter Constraints
—— observed

Rule Counter counters

SO 4 r0 a ioa
rl a a
r2 ath - b
r3 0 ioa
rd c i oate
rs atbtc atb+c

Fig. 2. An example illustrating the basic idea of FOCES. r; is a rule installed
at switch S; (i =0,1,...,5).

flow individually, and as a result suffer from two serious
limitations.

o Limited Detection Scope. Since they look at one flow
each time, mostly they can only check a limited number
of flows [26]-[28], e.g., flows passing a specific switch,
flows destined to a specific IP address, etc. As a result,
they may miss some forwarding anomalies happening to
flows that are not checked. For example, if we only look
at flows passing S2 in Fig. 2, we may miss forward-
ing anomalies for flows passing Sy. Thus, applying the
anomaly detection algorithms on a per-flow or per-switch
basis, without any prior knowledge of where forwarding
anomalies happen, can result in a limited detection scope.

o High Flow Table Overhead. In real networks, each
forwarding rule may aggregate multiple flows. Thus,
in order to check whether a specific flow conforms to
the flow conservation principle, one cannot directly use
the counters of forwarding rules [26] but has to install
dedicated rules to collect the statistics of that flow [27],
[28]. For example, in Fig. 2, the rule at S5 matches two
flows. To check the flow in solid blue line, one cannot use
the counter of the forwarding rule at So which aggregate
two flows. Instead, a dedicated counter rule that exactly
matches the flow solely for statistics collection should be
installed. If we need to analyze all flows in the network,
these methods can impose large overhead for flow tables,
considering that the hardware flow table size is generally
small for SDN switches (a few thousands of wildcard
rules [30]).

B. FOCES Overview

Idea: The key idea of FOCES is to extend the flow
conservation principle from individual flows to a network of
flows, by leveraging the relationship between flows and rules.
Take Fig. 2 as an example, which consists of six switches
So through S5, and each switch S; has only one rule 7;.
Assume the three flows (in solid lines) have volume a, b, and
¢, respectively. Then, the counters of rules should satisfy the
constraints listed in the middle of Fig. 2. Suppose the green
flow of volume « is diverted to S5 instead of Ss, as shown in
red dashed line. Then, the right dashed box shows the counter
values observed by the controller. It is easy to verify that
whenever a, b, ¢ are nonzero, the observed counter values
cannot satisfy the constraints. Note here we take the counters
of all flows in the network as a whole, and thereby can detect
forwarding anomaly if any flow is experiencing anomalies. In
addition, we directly use counters of aggregate rules, without
installing dedicated counter rules.

Architecture: Fig. 3 shows the system architecture of
FOCES, which consists of five major components. (1) The
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Fig. 3. The system architecture of FOCES.

TABLE I
SUMMARY OF KEY NOTATIONS

S a switch in the network.
f a flow in the network.
T a rule in the network.
H a Flow-Counter Matrix (FCM).
h; the ith column vector of FCM H.
X a counter vector.
Y a volume vector.
A an error vector.
GH the Rule Bipartite Graph (RBG) of a switch S
S with respect to FCM H.
Al the anomaly index.
T the detection threshold.
EI(r) the error index of rule 7.
AW (S) || the anomaly weight of switch S.
FT(S) the set of rules in switch S’s flow table.

FCM Generator retrieves the rules and topologies from the
controller, and generates the Flow-Counter Matrix (FCM) that
captures the relationship among rules and flows in the network.
(2) The Statistics Collector periodically queries switches for
flow statistics, and generates the counter vector storing the
counters of all rules. (3) The Flow-Counter Equation System
Constructor constructs an equation system based on the FCM
and counter vector. (4) The Detector solves the equation
system and decides whether there are forwarding anomalies
by comparing the solution errors to a given threshold. (5) If
the detector flags an anomaly, the Localizer tries to identify the
switch that is accountable for the anomaly by further analyzing
the equation system.

In the remaining of this section, we will present the theoretic
framework of FOCES, and analyze the detection boundary of
FOCES, i.e., under what condition FOCES can successfully
detect forwarding anomalies.

C. Flow-Counter Equation System

We show how to capture the constraints for counters of all
rules in the network as a linear equation system. For now,
we assume an ideal setting where there are no packet losses,
and counters of all rules are perfectly synchronized. Later in
the next section, we will show how to extend it to work in
realistic settings.

First, assume there are n flows f1, fo, ..., f,, and m rules
1,79, ...,y in the network, where m > n. Define the Flow-
Counter Matrix (FCM) H,, v, as:

1 if flow f; matches rule r;

H;; = (1)

0 otherwise

Then, define the counter vector as Y = (y1, 2, . . ., ym)T,
where y; is the counter value of rule r;, and the volume vector
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as X = (w1, 12,...,2,)T, where x; is the volume of flow f;.
When there is no forwarding anomaly, X and Y should satisfy
what we term as the flow-counter equation system:

HX =Y 2)
Suppose due to attacks the FCM is changed to H' # H.
Then, the observed counter vector will become Y’/ = H’

X #Y, Since the controller has no idea what H' is, when it
tries to recover X, it needs to solve the flowing flow-counter
equation system:

HX =Y’ 3)

Here X’ is the unknown variable. Since m > n, Eq. (3) is an
overdetermined equation system. Also, since Y/ = H' X, with
H’ #+ H, it is very possible that the overdetermined equation
system is inconsistent, meaning that there is no exact solution.
Then, the least-square estimate for X will be:

X =H"H)*HTY' “4)

With this estimate, the resultant counter vector will be Y =
HX. De@ne the error vector A as the absolute difference
between Y and Y':

A=Y —Y| ®)

Then, if we know that A # 0, we can definitely conclude that
there is a forwarding anomaly in the network.

To make the idea more concrete, consider the example
shown in Fig. 2, where the original and actual FCM are:

1 0 0 1 0 0
1 0 0 1 0 0
110 , o1 0
=19 0 of> T =11 0 0 ©)
0 0 1 10 1
11 1 11 1

Let the volume vector of these three flows be X = (a,b,c)? =

(3,4,5)T, then it is easy to calculate Y/, X, Y, and A as:

3 3 0
3 \ 3 0
Y = g,X:1,?: é,A:g %
8
8 8 0
12 12 0

Since A # 0, we flag the network under forwarding anomaly.

FCM Generation: To realize FOCES, we need a way to
efficiently generate the FCM. Since there are a large number
of “physical flows”, defined by say TCP five-tuple, we cannot
directly use them due to scalability issues. Here, we choose to
use the notion of “logical flows” or packet equivalence classes.
A logical flow is defined as a class of packets that experience
the same set of rules in the network.

Specifically, we generate the FCM by adapting the algorithm
for generating all-reachability table proposed in ATPG [31].
First, we create a symbolic header with all bits set to wildcards,
and inject it to each terminal port of the network. For each
terminal port, we match the symbolic header against each rule
in the flow table of the switch possessing that port, and create a
new symbolic header. The new symbolic header is constrained
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Fig. 4. A counterexample where FOCES misses the forwarding anomaly.

by the matching fields of the rule, and the actions of the rule
are taken on the header. For example, if a rule has a matching
field dst_ip = 10.0.0.1/24 and an action “Output to Port 27,
then the dst_ip of the header will be set to 10.0.0.1/24, and
the new header will be forwarded to the switch connected to
Port 2. As each header h traverses the network, the set of
rules matched by the header are recorded in h.history. When
it reaches a terminal port, a flow is created, and a column
is added to the FCM. The column has 1 at each row whose
corresponding rule appears in h.history, and O at all other
TOWS.

D. The Detection Boundary of FOCES

FOCES has a detection boundary, within which anomalies
can be detected. In what follows, we will first give a counterex-
ample, where a forwarding anomaly does not cause A # 0.
Then, we theoretically analyze the condition under which
FOCES can detect forwarding anomalies. With this condition,
we can decide whether a forwarding anomaly in a network
can be detected.

Counterexample for FOCES: Fig. 4 shows an example,
which is much the same with the one in Fig. 2, except that
the flow of volume ¢ now passes switch S5 before reaching
Sy and Ss. Still, we let the volume vector for these flows
be X = (a,b,c)T = (3,4,5)T. Then, the original FCM H,
the actual FCM H’, and the observed counter vector Y/ are:

1.0 0 1 0 0 3
1.0 0 10 0 3

I ) , o1 o o, |4

A=ty o 1]> T =11 0 1"V = |sg| ®
00 1 10 1 8
11 1 11 1 12

According to FOCES, the estimate of volume vector is X =
(3,1,8)7, which is an exact solution to HX' = Y7, i.e.,
a solution with A = 0. The reason is that HX' = Y’ is a
consistent equation system. Thus, the condition for successful
detection is equivalent to the condition for the flow-counter
equation system to be inconsistent. In the following, we will
analyze such condition from linear algebraic point of view.

Analysis on Detection Boundary: We still consider a specific
network consisting of m rules ry,79,...,7,, and n flows
fi, f2,..., fn. Represent the FCM H,,x, as a row vector
(h1,ha,...,hy). Since each column h; corresponds to flow
fi, in the following we will also use h; to refer to flow f;.
In the following, we define what a forwarding anomaly is and
under what condition it can be detected.

Definition 1: Consider a network and let H be its FCM. If
a flow h; € H with nonzero volume is modified to h} # h;,
we say h; is experiencing a forwarding anomaly, denoted as

Fig. 5. The flow rule graph for S2 in Fig. 4.

Note that the above definition captures the two avenues of
causing forwarding anomalies (i.e., modifying output ports of
rules, and directly forwarding packets without matching rules)
that we have specified in Section II-B. The reason is that both
avenues will make the forwarding path of a flow A change to
a different one, and thus the rules matched by the modified
flow A’ will be different from those of h.

Definition 2: We say a forwarding anomaly FA(h,, h}) is
detectable if and only if its flow-counter equation system
of Eq. (3) is inconsistent, Otherwise, we say FA(h;,h}) is
undetectable.

Theorem 1: A forwarding anomaly F'A(h;,h}) is unde-
tectable if and only if k) lies in the linear subspace generated
by hi,ha, ..., hy.

Proof: See Appendix A. |

Even Theorem 1 gives the necessary and sufficient condition
to determine whether a forwarding anomaly is detectable, it is
difficult to apply it to real networks. In the following, we will
reduce the above condition to the problem of finding a loop
in a bipartite graph, which is much easier and intuitive to
check. We will first introduce the notion of Rule Bipartite
Graph (RBG).

Definition 3: The Rule Bipartite Graph (RBG) of a switch
S with respect to FCM H, denoted as ggf(vm, Vout, E),
is constructed as follows. V,,; consists of all the rules cur-
rently installed at switch S. If there is a flow A € H matching

arule r; and arule r; € V,,¢ in sequence, denoted by 7; LN T,
then we add r; into V;,, and (r;,7;) into E. Similarly, if there
is a flow h € H matching a rule 7; € V;, and a rule r; in
sequence, then we add r; into V,,, and (r;,7;) into E. To
simplify notations, we also add a virtual rule 7 acting as the
first rule of all flows. Formally, we have:

h
V;né{ril 3Tj € Vour, 3h € H, 7“7;—>’I“j}U{’I"S} ©)

Theorem 2: A forwarding anomaly FA(h;,h}) is unde-
tectable if and only if there is a switch S whose RBG with
respect to FCM H 2 HU {I'},, ie., gg(vm,%ut,E),
contains a loop.

Proof: See Appendix B. |

To explain what Theorem 2 means, we return to the example
in Fig. 4. The RBG of S5 is shown in Fig. 5. We can see that
there is a loop marked by green dashed lines. The numbers
besides the edges are the volumes of flows. By applying the
operations (+z) marked besides the dashed lines, we can
obtain a new flow distribution shown inside the red dashed
rectangles. Under this new distribution, the counter values
of all rules can be achieved. That is, the distribution can be
seen as another “explanation” for the observed counter values.
Under this new explanation, we can redirect the flow of volume
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a from r; — 79 to r1 — rs, without breaking the constraints
specified by the flow-counter equation system.

Note the detection boundary given by Theorem 2 does not
limit the usage of FOCES in real networks. The reason is
that the probability that a forwarding anomaly will introduce
a loop in some RBG can be very small. Our experiments with
realistic datacenter network topologies show that most of the
anomalies can be successfully detected (see Fig. 14). As one
of our future work, we will study how to strategically generate
rules such that it is impossible for any forwarding anomalies
to cause loops in RBGs.

IV. ANOMALY DETECTION

The last section shows how FOCES can detect forwarding
anomalies in an ideal setting. However, to detect anomalies
in realistic settings, we are still faced with two challenges:
(1) Noises. In real networks, both packet losses and out-
of-sync counters can result in A # 0. We need to make
FOCES robust against such noises. (2) Overhead. Computing
A requires calculating the inverse of FCM, which is expensive
when there are a large number of rules and flows. We need to
speedup FOCES to make it scalable for large networks. In the
following, we show how we resolve the above two challenges.

A. Making Detection Robust Against Noises

In the following, we first define the anomaly index to
measure the possibility that a forwarding anomaly exists. If
the anomaly index is higher than a threshold 7', then we say
there are forwarding anomalies. Then, we discuss how to set
the default threshold analytically.

Anomaly Index: The design of anomaly index is based
on the “majority good” assumption, i.e., most of the flows
are forwarded correctly except a small fraction. Specifically,
let A be the error vector calculated using Eq. (5). Then,
the anomaly index A[ is defined as % where Er7mqz
and E7rry,.q are the maximum and median of all elements
in A, respectively. Due to the “majority good” assumption,
Errpeq should be always small, while Frr,,,, can be large
when there are forwarding anomalies. For the example shown
in Fig. 2, Errpmas = 3, Errmeq = 0, and AI = 400. Based
on this, FOCES judges that there are forwarding anomalies if
AI > T, where T is termed as the detection threshold. In the
following, we show how to set the default detection threshold.

Default Detection Threshold: Choosing a good default value
for detection threshold analytically requires us to know the
probability distribution of A. However, this is difficult since
we do not have models for the noises introduced by packet
losses and out-of-sync counters. As a compromise, we use
an over-simplified way to estimate the distribution of A, and
use this distribution to choose a default threshold for FOCES.
Specifically, we approximate both Y (i) and Y (i) with normal
distribution N (Y (i),0?), where Y (i) is the expected counter
values in ideal settings. Under this assumption, each element
of A follows a folded normal distribution, whose cumulative
distribution function is F(x) = erf(z/v/202), where erf()
is the error function [32]. By solving F'(z) = 1/2, we have
r = \2erf~1(1/2)0 ~ 0.6750. Thus, we use 0.6750 to
approximate E7rr,,.q. According to the three-sigma rule in
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Fig. 6. The construction of sub-FCM for Sz in Fig 2.
statistics [33], Errpq. should be less than 30 with probability
0.997. Thus, %‘;: should be less than O_S’ﬁ ~ 4.4 with
high probability. Thus, we choose T' = 4.5 as the default
detection threshold. We will show this threshold achieves a
good detection accuracy with experiments (see Section VI-D).
Note that the above analysis only offers a simple way to
choose the default detection threshold. We will study how
different choices of threshold value affect the false positive
rate and true positive rate in Section VI-D. Note it is difficult
to determine the optimal threshold value since it depends on
a lot of factors including traffic characteristics, packet loss
rates, and customized tradeoff between false positives and
false negatives. We acknowledge that this challenge is faced by
FOCES, as well as other statistics-based methods [26], [28].
Algorithm 1 summarizes the threshold-based detection
algorithm.

Algorithm 1 DetectAnomaly (Y, H,xn,T)

Input: Y’ = (y1,%2,...,Ym)’: the counter vector,
H,,, «n: the Flow-Counter Matrix (FCM), T': the
detection threshold.
Output: True (Anomaly) or False
1 Compute the volume vector estimate
X — (HTH)"'HTY",
2 Compute the counter vector estimate Y « HX;
3 Compute the error vector A — |Y/ —Y|;
4 Err,,q. < maximum of A;
5 Err,eq «— median of A;
6 Al — frmes;
7 if AI > T then
8 | return True;
9 else
10 | return False;
11 end

(Normal).

B. Making Detection Scalable With FCM Slicing

In the following, we show how to make FOCES scalable
by reducing the computation time. Our method is inspired by
the Rule Bipartite Graph (RBG) introduced in Section III. We
observe that the RBG for a specific switch only contains rules
of that switch and their predecessor rules. We can extract the
sub-FCM corresponding to the RBG, one for each switch.
Since sub-FCMs are much smaller than the original FCM,
we can expect to reduce the computation time by applying
the threshold-based algorithm for each sub-FCM individually.

FCM Slicing: For a specific switch 5;, let its RBG be
Gs,(Vin, Vour, E). First, we extract the rules R(S;) for S; as
{(VinUVuut)\7s }. Note the virtual flow rule 7 is not included.
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Then, we identify the flows F'(.S;) for S; as those that match
at least one flow rule in R(S;). H(S;) is the sub-matrix of
H with only those rows and columns corresponding to R(S;)
and F'(S;), respectively.

Here, we present an example to show how to slice
the original FCM into sub-FCMs. Fig. 6 shows the RBG
Gs, Vin, Vour, E) for switch Sy in Fig 2. The rules in R(S2)
are marked with dashed rectangles, and the flows in F'(.S2) are
just all flows in the network. The sub-FCM H (S3) is a 4 x 3
sub-matrix of the original FCM H. Since this small topology
contains only 6 rules and 3 flows, the effect of slicing is not
that remarkable. In real networks with many rules and flows,
the sub-FCMs can be much smaller compared with the original
FCM.

Algorithm 2 summarizes the threshold-based detection algo-
rithm with slicing.

Algorithm 2 DetectAnomalySlicing (Y, Hyxn, T, 1)

Input: Y’ = (y1,¥2,...,ym)’: the counter vector,
H,,, «n: the Flow-Counter Matrix (FCM), T': the
detection threshold, n: the number of switches.
Output: True (Anomaly) or False (Normal).
1 foreach i < 1 to n do

2 | Compute the sub-FCM H (i) for switch S;;
3 | Extract the sub-vector Y’ (i) for switch S; from Y”;
4 | Compute the volume vector estimate
X — (H@)"H(@@)""HTY(i);
5 | Compute the counter vector estimate Y (i) «— H(i)X;
6 | Compute the error vector A(i) «— |Y'(i) — Y (i)];
7 | Errmes — maximum of A(i);
8 | Errmeqd — median of A(i);
9 Al «— E%;:z:,
10 | if AI > T then
1 | | return True;
12 | end
13 end

14 return False;

Analysis on Detection Equivalence: The following theorem
says that the detection algorithm with slicing is equivalent to
the one without slicing in detecting forwarding anomalies.

Theorem 3: If a forwarding anomaly FA(h,,h}) is
detectable (without slicing), then it is still detectable when
using slicing.

Proof: See Appendix C. [ ]
We will use experiments to further validate such equivalence
in Section VI-F.

Analysis on Computation Complexity Reduction: We use
analysis to show that by using slicing, the computation com-
plexity of FOCES reduces from O(N?) to O(N?-3), where N
is the number of flows in the network (See Appendix D).

We will use experiments to further demonstrate the reduc-
tion of computation time by using slicing in Section VI-F.

C. Security Analysis

In the following, we show how FOCES can detect packet
early drops and path deviation that are defined in Section II.

Suppose a packet p should be forwarded along a path S; —
So,...,— S,, and let r; be the rule matched by p at switch
S;. Consider the following anomalies.

Path Deviation: Here, we only consider the following two
special cases, and the cases of general path deviation are
largely the same.

o Switch Bypass. Suppose S; is compromised and forwards

p directly to switch S;;2, bypassing the intended next
hop S;41. Although the counters of r; and 7,12 can be
made consistent, the counters of r;; will be less than
expected, resulting in inconsistency. Such inconsistency
can be detected by FOCES when the condition given in
Theorem 2 is met.

o Path Detour. Suppose S; is compromised and forwards
p along a path S; — Dy — Do,...,— D, —
S; — Siy1. Although the counters of r; and r;41 can
be made consistent (recall that the adversary has full
control over S;), the counters of Dy through D,, will be
higher than its expected value, resulting in inconsistency.
Such inconsistency can be detected by FOCES when the
condition given in Theorem 2 is met.

Early Drop: Suppose S; is compromised and drops p instead
of sending it to its next hop S;;1. As a result, the counter of
ri+1 should be less than its expected value, thereby breaking
the consistency between the counters of 7; and 7;4;. Such
inconsistency can be detected by FOCES when the condition
given in Theorem 2 is met.

V. ANOMALY LOCALIZATION

In the last section, we have shown how FOCES can detect
forwarding anomalies by analyzing counters of flow rules. It
will be even better if we know which switches are accountable
for the anomalies, which can help us isolate these switches.
In this section, we will present two algorithms for localizing
malicious switches. For simplicity of presentation, we first
assume there is only one malicious switch, and then discuss
how to handle multiple ones.

A. Observation and Basic Idea

Recall in the slicing-based approach, we calculate the
anomaly index AI for each switch. One may think the switch
with the largest anomaly index AI is the malicious switch.
However, we observe that when a malicious switch modifies
one of the rules in its flow table, the counters of those rules at
its downstream switches will actually be affected, resulting in a
larger anomaly indices Al for these switches. Taking Fig. 7 as
an example, there are seven switches Sy through Sg, and each
switch S; has only one rule r;. Suppose S; is the malicious
switch which modifies the action of r; from “forwarding to
So” to “forwarding to S3”. As a result, r3’s counter becomes
4 instead of 7, and the error vector for Sy, denoted as A(Ss),
is calculated as (1,1,1)%, Thus, the AT for S is 1, while the
AT’s for other switches (including Sp) are O.

Based on the above observation, our idea is to first find
the switch, say S;, that has the largest anomaly index, and
then suspect one of S;’s upstream switches is malicious. In
the following, we will introduce a baseline localization algo-
rithm, discuss its limitation, and finally present an improved
algorithm.
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B. The Baseline Localization Method

Before introducing the baseline localization method,
we first formally define what a upstream switch is.
Let Gs, (Vin(S:), Vour (Si), E(S;)) be the Rule Bipartite
Graph (RBG) for switch S;, then we say S; is an upstream
switch of S; if S; has a rule r € V;,,(.S;). The set of upstream
switches of S; is then:

UP(S;) £{S;| Ir € (FT(S;) NVin(Si))}  (10)

where F'T(S;) is the set of rules in S;’s flow table.

Since U P(S;) can have more than one switch, we still need
to identify the malicious switch in UP(S;). To achieve that,
we evaluate the possibility for each rule r € V;,,(.S;) to be the
modified rule, and then choose the switch that has the rule with
the largest possibility as the malicious one. Specifically, let A
be the error vector for S;, and Sum(A) be the sum of absolute
values for all elements in A. For each rule r € V;,(S;),
we calculate its error index E1T as:

_ Min(Sum(A), r.counter)
~ Max(Sum(A), r.counter)

EI(r) (11)
Here, r.counter is the counter value of r. Note EI(r) reflects
the similarity between Sum(A) and r.counter. The rationale
for this definition of FT is explained as follows.

Suppose S; has n upstream switches, ie., UP(S;) =
{S1,52,...,5,}, and each upstream switch S; has a rule
r; which forwards flows to S;. Assume these flows from
upstream switches match m rules at S;. Then, the sub-FCM of
S;, denoted by H (.S;), has n+m rules, i.e., n rules at upstream
switches and m rules at S;. Let H'S; be the sub-FCM due
to forwarding anomalies, and let the expected and observed
counter value of rule 7; be ¢; and ¢’. Suppose S, € UP(S;)
is malicious and modifies its rule 7, to send flow f; to another
switch other than S;. Then, we have ¢} = ¢; — ¢, # ¢;, with
a deviation of c,. We observe that the least square estimate
will result in the deviation ¢, will be evenly spread into each
rule’ counter. Specifically, suppose the least square estimate
for X is X, then, the resultant counter vector Y = H'(S;) X
will be:

9 / Cx / Cx / Cx T

Y ( in+m762 n+m7"'7c7r1,+nin+m)

(12)

Recall in Eq. (5), Sum(A) is the sum of the absolute deviation

of each rule’s counter, i.e., Sum(A) = 7" | — (¢ +

Ca

n+m )| = Cg.
Take Fig. 7 for example, where we find S5 has the maximum

AlI. For switch So, we have n = 2, m = 1, and Sum/(A) = 3.
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Y is calculated as:

- a 74+ a 54_ “ )T
2+1 2+1 2+1

Here, ¢} is the counter of r1, i.e., ¢} = 3. Since, V;,(S2) =
{r1,r6}, we compute EI for r; and r¢ and get EI(r;) =
3/3=1and El(re) = 3/4.

Given the above discussion, we choose to use the similarity
between a rule’s counter and Sum/(A) as the error index ET
of the rule. That is, the larger a rule’s ET is, the more possible
the rule is modified. Our baseline localization method tries to
find the rule » with the largest E'I, and if r is installed at
S, then it identifies S as the malicious switch. In the above
example, r; has the largest 1, and we can correctly identify
S as the malicious switch.

Even the baseline localization can help localize the mali-
cious switch, it has several limitations. (1) Noises (e.g., packet
losses, out-of-sync counters) can make Al fluctuate dramat-
ically. As a result, multiple switches may have similar AI’s,
and we cannot determine which switch is at the downstream
of the malicious switch. If we make a hard decision here,
we may run into false localization results. (2) Even we can
correctly determine the downstream switch, rules in the V;,
of its RBG may have similar EI’s, which can further result
in false localization results. Consider the example in Fig. 7,
and suppose the volume of flow in blue becomes 3. Then,
the counter of rg is 3, and FI(rg) would be 1, the same as
EI(r1). In such a case, we cannot identify Sy correctly.

Y =3

13)

C. The Voting-Based Localization Method

To overcome the the above limitations, we propose an
improved localization method. In this method, we introduce an
anomaly weight AW for each switch, indicating the possibility
for a switch to be malicious. The anomaly weight AW (S) of
S is calculated as follows:

ZreFT(S) EI(r)
|[FT(9)]

Then, we identify the switch with the maximum AW as
malicious.

Algorithm 3 summaries the localization process of voting-
base method. First, FOCES generates its RBG for each switch
S;, and constructs its sub-FCM H; from the RBG (Line 1-3).
Then, FOCES computes the error vector 9; for S; (Line 4),
and computes the error index FI for each rule in V;, of
the RBG (Line 5-7). Finally, FOCES calculates the anomaly
weight AW for each switch by first summing up the E1s of all
rules installed in it, and normalizes the sum with the number
of rules (Line 9-15). The switch with the maximum AW is
identified as malicious (Line 16-17).

First, note this voting-base method improves FOCES’s
robustness against packet losses. Since packet losses will not
just affect one rule’s F'7, but all other rules’ E'I’s. Thus, if we
compute the sum of all EI’s for each switch and compare
the sums, the effect of packet losses will even out. Secondly,
a malicious switch may probably modify more than one rule.
If so, by summing up the EI’s for each switch, the difference
between the malicious switch and normal switches will be even
remarkable, thereby improving the localization accuracy. We

AW(S) = (14)
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Algorithm 3 LocalizeMaliciousSwitch(S)

Input: S = {5, 52,...,S,}: the set of all switches
Output: S, € S: the malicious switch
1 foreach i — 1 to n do
Compute the RBG of Gg, (Vin, Vour, E) for S; ;
Construct the sub-FCM H; from the RBG of S;;
Compute the error vector A; for S; ;

2
3
4
5 | foreach r € V;,, do

6 ‘ EI(’I“) - Min(Sum(A;),r.counter)
7

8

9

Maz(Sum(A;),r.counter)
end

end

foreach i — 1 to n do

10 | AW(i)«0;

un | foreach r € FT(S;) do

12 | AW (i) — AW (i) + EI(r) ;

13 end
u | AW() — AW (@) /|FT(S,)| ;
15 end

16 © «— argmax, ST (i);
17 return S, ;

will use experiments to show the voting-based method indeed
improves the accuracy compared with the baseline method (see
Section VI-E).

Discussion: When there are multiple malicious switches, we
can simply adapt this voting-based method by introducing a
threshold, i.e., localization threshold. If a switch has a value
of AW larger than the localization threshold, we identify this
switch as one of the malicious switches. How to choose the
value of localization threshold is similar to that for detection
threshold, and is out of scope of this paper.

VI. IMPLEMENTATION AND EVALUATION

This section presents the implementation of FOCES, and
evaluates it with experiments. We are interested in answering
the following questions:

1) Can FOCES effectively detect forwarding anomalies
when there are packet losses?

2) Will FOCES achieve a high detection accuracy and
precision?

3) How accurately can FOCES localize the malicious
switches accountable for the detected anomalies?

4) Whether slicing can help FOCES achieve a faster detec-
tion without loss of accuracy?

5) Will FOCES incur large overhead on the channel from
switches to the controller?

A. Implementation

We prototype FOCES with approximately 1800 lines of
Python codes. The architecture is shown in Fig. 3, and some
implementation details are explained as follows. The FCM
Generator retrieves the rules and topologies via the Static
Flow Pusher, a REST API offered by Floodlight, and gen-
erates the FCM using an algorithm adapted from ATPG [31],
as introduced in Section III-C We store the FCM as a
sparse matrix using the Python sparse library. The Statistics

TABLE II

THE PARAMETERS OF FOUR NETWORK TOPOLOGIES
USED IN OUR EXPERIMENTS

# switches  # hosts  # flows  # rules
Stanford 26 26 650 1300
FatTree(4) 20 16 240 556
BCube(1,4) 24 16 240 597
DCeli(1,4) 25 20 380 859

0 100 150 200

Fig. 8.  The anomaly indices with and without forwarding anomalies,
respectively. BCube(1,4) is used for the experiment.

Collector collects flow statistics also via the Static Flow
Pusher API, and the Detector uses the NumPy library in
Python to compute matrix inversion and transpose.

B. Experiment Setup

We use Floodlight v2.1 [34] as the controller, and use
Mininet [35] to generate different network topologies, consist-
ing of Open vSwitches [36]. Floodlight and Mininet are run
on the same Linux desktop with 3.5GHz Intel Core i3 CPU
and 16GB memory. We use four different network topologies
including: the Stanford backbone network (Stanford) [37], Fat-
Tree(4), BCube(1,4), and DCell(1,4). For Stanford, we attach
one host to each switch, while for the other three topologies,
we attach one host for each edge switch. The parameters of
these topologies are summarized in Table II. For each network,
we generate a flow of the same rate between each pair of host
by using iperf. Since we fix the total flow rate of each
network to 800Mbps, the flow rate is 2Mbps for Stanford,
4Mbps for FatTree and BCube, and 2.5M bps for DCell. For
each flow, the Floodlight controller computes flow rules using
shortest-path routing, and installs the rules at switches’ flow
tables.

C. Experiment 1: Functional Test

In this experiment, we test whether FOCES can detect
forwarding anomalies when there are packet losses. We use
BCube(1,4) under packet loss rates 0%, 5%, and 10%. After
60 seconds, we randomly modify one rule in the network to
create forwarding anomalies, and repair the modified rule after
another 60 seconds. The experiment runs for 180 seconds in
total. FOCES runs a detection process every 5 seconds, with
the detection threshold set to 4.5.

Fig. 8 shows the anomaly index of each detection. We
can see the index quickly goes beyond the threshold, when
the forwarding anomalies happen, and returns to low val-
ues when the forwarding anomalies end. We also see that
when the packet loss rate increases, the anomaly indices
for forwarding anomalies and normal cases become less
distinguishable.
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Fig. 10. The detection precision for four different topologies.
D. Experiment 2: Detection Accuracy and Precision

Detection Accuracy: We first evaluate the detection accuracy
of FOCES under different packet loss rates. We use the
receiver operating characteristic (ROC) curve, which plots
the True Positive (TP) rate against the False Positive (FP)
rate, and the area under the ROC curve represents the detec-
tion accuracy. In the experiment, for each network topology,
we randomly modify one flow rule, and vary the detection
threshold from 1 to 100. The detection threshold is still set
to 4.5.

Fig. 9 reports ROC curves for different packet loss rates
from 0% to 25%. The dotted lines from the left-bottom to
right-top are reference curves representing “random guess”,
and the larger area under the ROC curve, the more accurate the
detection method is. We can see that the accuracy of FOCES
is little affected when the packet loss rate is below 10%, for all
four networks. Especially for DCell with packet loss rate 10%,
FOCES achieves a TP rate nearly 100% and a FP rate around
4.3%. The accuracy of FOCES drops when packet loss rate is
larger than 10%. The reason is that packet losses can violate
the constraints of counters, leading to more false positives.
Despite the degradation, FOCES is still a useful indicator of
forwarding anomaly (compared with “random guess”), even
for packet loss rate as high as 25%. The above results show
that FOCES has a high detection accuracy under moderate
packet losses.

Detection Precision: We continue to evaluate the detection
precision of FOCES, and how it is affected by the number of
forwarding anomalies. To quantify precision, we use 7p-r,
which indicates what percentage of samples that are marked
as forwarding anomalies are actually such. In this experiment,
we fix the detection threshold to 7" = 3.5, and vary the packet
loss rates. For each packet loss rate, we randomly modify 1,
2, and 3 rules.

Fig. 10 reports the relationship between detection precision
and packet loss rate, for different number of modified flow
rules. Here each data point is an average of 50 experiment
runs. We can see that for a fixed packet loss rate, the precision
improves as more rules are modified (thereby causing more
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forwarding anomalies). Thus, FOCES can identify anomalies
more precisely, when more flows are deviating from their
expected paths.

E. Experiment 3: Localization Accuracy

In this experiment, we evaluate the accuracy of the pro-
posed localization methods, including the baseline method and
the voting-based method. To simulate forwarding anomalies,
in each experiment run, we randomly pick one switch as the
malicious switch, and randomly modify one rule in its flow
table. Then we try to detect the forwarding anomaly using
FOCES, and if an anomaly is detected, we check whether
FOCES can localize the malicious switch.

We run the experiment using the four topologies and for
each topology, we repeat the experiment for 50 times. Let Ny
and NN; be the number of times that FOCES successfully detect
the forwarding anomalies and localize the malicious switch,
respectively. Note here N; < N since we perform localization
only after FOCES successfully detects the anomaly. Then,
we calculate the localization accuracy as N;/Ny.

In addition to reporting the above “exact” accuracy, where
only the rule/switch with the largest EI/AW is chosen to
be malicious, we also report a “coarse” accuracy, where
two rules/switches with the top-2 largest EI/AW are chosen.
Specifically, we report N//N4, where N/ is the number of
times for successful localization, given that the malicious
switch has a rule with the top-2 highest EI (for the baseline
method), or has the top-2 highest AW (for the voting-based
method).

As can be seen in Fig. 11, the improved voting-based
method can achieve a higher localization accuracy than the
baseline method. Specifically, when the packet loss rate is 5%,
the baseline method can only achieve an accuracy of around
50%, while the voting-based method can achieve an accuracy
of around 80%. If we are allowed to choose the top-2 suspected
rules/switches, the accuracy for both methods increases, and
the voting-base method can achieve an accuracy as high as
90% for all four topologies when the packet loss rate is no
larger than 10%.
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The localization accuracy of baseline and voting-based method for different topologies.

“Top1” refers to only selecting the rule/switch with the

largest EI/AW, and “Top2” refers to selecting two rules/switches with the top-2 largest EI/AW.
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FE. Experiment 4: The Effectiveness of Slicing

In this experiment, we study whether slicing can help
FOCES reduce the computation time while maintaining high
detection accuracy.

First, we show slicing can indeed help FOCES significantly
reduce the computation time. We use the FatTree(8) topology,
and set up different number of flows. As can be seen from
Fig. 12, the computation time of the baseline FOCES (without
slicing) is around 40 seconds when there are no more than
5K flows, but it increases rapidly to more than 5K seconds
when there are around 12K flows. In contrast, the computation
time of FOCES with slicing grows much slower than the
baseline. Specifically, when there are around 12K flows, the
computation time of FOCES with slicing is less than 20% that
of FOCES without slicing.

Secondly, we show slicing will not decrease the detection
accuracy of FOCES. Fig. 13 reports the detection accuracy of
FOCES with and without slicing, when the optimal threshold
value is set. The accuracy is calculated as %, where
N and P are the total number of negatives and positives,
respectively. Surprisingly, we find that FOCES with slicing can
achieve an even higher detection accuracy than that without
slicing, except for the BCube(1,4) topology. This is probably
because slicing can prevent noises from smoothing out the high
anomaly index caused by forwarding anomalies. We further
study the optimal threshold for FOCES using and without
using slicing. Specifically, we vary the threshold from 0 to
100, and report the detection accuracy in Fig. 14. We can see
that FOCES with slicing prefers a larger threshold compared
with FOCES without slicing. This may further validate our
guess that slicing can reduce the effect of noises.

In sum, the above experiments show that slicing can indeed
reduce the computation overhead of FOCES, without sacrific-
ing detection accuracy.

G. Experiment 5: Bandwidth Overhead

FOCES needs to periodically query counters from switches,
thus we are interested in whether this will congest the switch-
to-controller channel. In this experiment, we let FOCES
request flow table of each switch from the controller, and sum
up the size of each flow table. Table III shows that the total
flow table size is relatively small for these topologies. As the
detection period is on a scale of several seconds, it is expected
that FOCES will not congest the channel from switches to the
controller.

H. Experiment 6: Results for Larger Topologies

In the previous experiments, we only consider topologies
with 20-26 switches, as shown in Table II. To demonstrate
how FOCES scales to large networks, we redo the experi-
ments 2, 3, and 4 using the FatTree(8) topology, which consists
of 80 switches. Fig. 15 reports the ROC curves, detection
precision, and the relationship between detection accuracy
and threshold value. Fig. 16 reports the localization accuracy
of baseline and voting-based method. We can see that the
results are quite similar to those in Fig. 9, Fig. 10, Fig. 14,
and Fig. 11.

L. Experiment 7: Speeding Up Detection With Multiple Cores

As already noted in Algorithm 2, our detection algorithm
can slice the large FCM to reduce the computation complexity.
More importantly, the algorithm can naturally be parallelized
in order to scale to large networks. In this experiment, we eval-
vate how our parallelized detection algorithm can scale for
large network topologies using multiple CPU cores.

We use the same setting as Experiment 4, i.e., FatTree(8)
as the topology. Different from Experiment 4, we fix the
number of flows to around 12K, and use two Intel Xeon Gold
5118 CPUs @2.30GHz with 12 cores. Since our detection
algorithm is implemented with Python, where global inter-
preter lock (GIL) prevents multiple threads running simulta-
neously, we use multiple processes to run simultaneously on
multiple CPU cores. In addition, we use the Intel Math Kernel
Library [38] to further speed up the matrix computation.

As shown in Fig. 17, initially the detection time is around
950 seconds, which is similar to that in Fig. 12. However,
as we gradually increase the number of cores to 24, the time
decreases to around 330 seconds. It is expected that our
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TABLE III
THE TOTAL SIZE OF FLOW TABLES REQUESTED BY FOCES IN DIFFERENT NETWORKS
FatTree(4) FatTree(6) FatTree(8) BCube(1,4) BCube(1,6) DCell(1,4) DCell(1,6)
Number of Rules 1790 7396 30168 1513 7943 2969 13454
Total Flow Table Size (MB) 0.45 1.81 7.38 0.39 1.98 0.57 2.25
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g ‘ ‘ ‘ ‘ Path verification tools try to detect forwarding anomalies
3o® ) by verifying whether the forwarding path took by packets are
20'6 ) corresponding to the paths calculated by the controller. Path
A ) verification for the Internet has been extensively studied [29],
§°'2 ) [39], [40]. The basic idea is to let each router along the
-
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Fig. 16. The localization accuracy of baseline and voting-based method for
FatTree(k = 8) topology. “Top1” refers to only selecting the rule/switch with
the largest EI/AW, and “Top2” refers to selecting two rules/switches with the
top-2 largest EI/AW.
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Fig. 17. The relationship between detection time of FOCES and the number
of CPU cores. The FatTree(8) topology with around 12K flows is used for
experiments.

algorithm can further speed up when implementing as a
multi-thread program in C++4-.

VII. RELATED WORK

Many tools have been proposed to detect the forwarding
anomalies in SDN. We broadly classify them into two cate-
gories: path verification tools and statistics verification tools.

forwarding path embeds a cryptographic tag, e.g., Message
Authentication Code (MAC), into each packet, such that
destination switch can check whether a packet has followed
the path claimed by the sender. SDNsec [22], REV [23], and
WedgeTail [25] apply path verification techniques in the new
context of SDN.

In SDNsec [22], the controller pre-computes the path for
each flow to be examined, and generates a forwarding entry
for each switch along the path. Then, the controller instructs
the ingress switch to embed these entries into packets, and
each switches along the path forward packets according to
the embedded forwarding entries. In addition, each switch
also embeds a Message Authentication Code (MAC) into
each packet to proof that it forwards the packet. One serious
problem with SDNsec is that the overhead: to ensure every
packet has followed the correct path, the egress switch needs
to report all packets of the flow to the controller, which will
incur high overhead on the control channel.

REV [23] reduces the overhead by proposing the compres-
sive MAC, which allows switches to compress MACs before
reporting to the controller. Using compressive MAC, the egress
switch of a flow only needs to report a single flow packet to
the controller. The authors prove that once the flow packet
passes the verification, it holds with high probability that each
packet of the flow has traversed the intended path.
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WedgeTail [25] uses a similar approach, where the con-
troller compares the expected and actual trajectories of packets
to detect forwarding anomalies. Different from SDNsec and
REV which checks a specific flow, WedgeTail aims to detect
malicious forwarding node. To do so, it tries to identify the
most frequently traversed nodes in the network, and analyzes
the trajectories of packets that originating from ports of these
devices.

One common drawback of the above path verification tools
is that switches should be modified to compute tags and extra
header space should be reversed to carry these tags, which
can seriously limit their deployment in real networks.

Statistics verification tools try to detect forwarding anom-
alies by collecting and analyzing flow statistics. Compared
with path verification tools, they do not need to add extra
packet headers, or modify switch processing logics. The key
idea is to leverage the “flow conservation principle”, i.e., if all
packets of a flow are forwarded correctly, the counters of
this flow at all switches along the forwarding path should be
roughly the same [41], [42].

SPHINX [26] calculates a metric named similarity index,
for each flow, based on the flow statistics collected from
switches along the forwarding path of the flow. The index
approximately measures the data volume for the flow, and
honest switches tend to report a similar index. Then, SPHINX
detects a malicious switch if its index differs much from
the average index for the flow. SPHINX did not discuss
how to deal with wildcard rules that can match multiple
flows.

Chao et al. [27] propose to detect malicious switches
by checking whether the counters of adjacent switches are
consistent. Specifically, to monitor a rule r at a switch S,
the controller installs dedicated counter rules (rules used solely
for counting, without affecting forwarding behaviors) at each
neighboring switch of S. These rules have the same matching
fields with r, and count the number of packets flow in or out
of switch S. Rule r passes the verification if the difference
of these two numbers is below a threshold. Since monitoring
each rule requires one or two counter rule for each neighboring
switch, it may exhaust TCAM memory of switches if we need
to check all the rules in the network. In addition, it requires
cascaded flow tables, which are still not well supported by
many SDN switches.

Based on a similar idea, FADE [28] installs dedicated flow
rules at switches to collect flow counters, and checks the
consistency among counters of the same flow. To minimize
the cost of dedicated flow rules, FADE introduces the concept
of rule paths, and designs algorithms to select the minimum
number of flows to cover all rule paths. Similarly, FADE has
large overhead as it needs more than two dedicated rules per
flow for collecting statistics.

FlowMon [43] detects packet droppers and packet swap-
pers in SDN, also based on the flow conversation prin-
ciple. Different from [27] and [28], FlowMon does not
require dedicated flows. However, it has a smaller detection
scope as it only checks the per-port statistics, rather than
per-flow statistics. This means that FlowMon may miss some
carefully-crafted forwarding anomalies that preserve the con-
servation of per-port statistics.

Different from all the above statistics verification tools that
detect forwarding anomalies on a per-flow or per-switch basis,
FOCES can detect anomalies at network wide, since it ana-
lyzes the flow-counter equation system, which characterizes
the network-wide forwarding behaviors. In addition, FOCES
does not require dedicated counter rules, thus has no overhead
on switch flow table space.

VIII. CONCLUSION

This paper presented FOCES, a new forwarding anomaly
detection and localization method for Software Defined Net-
works (SDNs). Different from existing statistics verification
tools that look at individual flows, FOCES can detect for-
warding anomalies at a network wide, and does not need to
install any dedicated rules. We theoretically analyzed the con-
dition for FOCES to successfully detect forwarding anomalies,
and used experiments to show FOCES can achieve a high
detection and localization accuracy with small false positive
rates. To make FOCES scale to large networks, we proposed
a slicing-based method which can significantly reduce the
computation cost. Our future work includes (1) designing
an algorithm to adaptively determine the optimal threshold
value, and (2) studying how the condition that an adversary
can game the statistics-based methods including FOCES, in
order to mislead them to make false judgments.
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