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Storage savings and data confidentiality are two primary goals for outsourced storage. However, encryption by
design destroys the content redundancy within plaintext data, so there exist design tensions when combining
encryption with data reduction techniques (i.e., deduplication, delta compression, and local compression). We
present EDRStore, an outsourced storage system that realizes encrypted data reduction to achieve both storage
savings and data confidentiality. EDRStore’s core idea is a careful design of the encryption and data reduction
workflows. It proposes new key generation and encryption schemes to preserve the content similarity of
encrypted data for deduplication and delta compression. It further proposes selective local compression based
on content similarity, so as to achieve storage savings of encrypted data from both delta compression and local
compression. Evaluation on real-world datasets shows that EDRStore achieves higher storage savings than
existing encrypted storage approaches and incurs moderate performance overhead compared with plaintext
storage.
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1 INTRODUCTION
The global data volume reached 64.2 zettabytes in 2020 and is expected to be more than doubled in
the next five years [30]. Such unprecedented data growth motivates enterprises and individuals to
increasingly outsource storage management to public clouds [57]. There are two key requirements
for outsourced storage to be practical: (i) storage savings (i.e., the least possible storage resources
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are incurred to minimize outsourcing costs) and (ii) data confidentiality (i.e., the outsourced data is
protected from unauthorized access [31]).

To achieve storage savings, a common approach is to apply data reduction techniques to remove
the content redundancy at different granularities, so as to reduce the footprints in outsourced storage.
There are three widely used data reduction techniques, namely deduplication, delta compression, and
local compression, and they can be applied in sequence tomaximize storage savings [51, 59, 60, 72, 77].
Specifically, a storage system first applies chunk-based deduplication to remove duplicate chunks
with identical content. It then applies delta compression to remove the redundancy of non-duplicate
but similar chunks that have large fractions of identical content. Finally, it applies local compression
to encode the remaining non-duplicate chunks into smaller-size codes to remove the internal
redundancy. Field studies show that deduplication can save the space of primary workloads by
2× [46] and that of backup workloads by even up to 50× [63]. For post-deduplicated data, local
compression brings 3.1× savings, while delta compression and local compression together further
bring 10.2× savings [59].
To realize data confidentiality, a client should first encrypt outsourced data before uploading

them to the cloud, so as to protect the data from unauthorized access; the cloud further applies
data reduction to the encrypted content originating from multiple clients (note that applying data
reduction prior to encryption poses practical concerns; see §2.2). Traditional symmetric encryption,
however, is incompatible with any data reduction technique since each client encrypts its data with
its own distinct secret key, so any duplicate content shared among the data across clients will be
destroyed after encryption. Thus, extensive studies in the literature explore the combination of data
reduction and encryption for both storage savings and data confidentiality. One class of approaches
is encrypted deduplication [13, 14, 23, 55, 71, 74], which combines encryption and deduplication by
encrypting the original data chunks with a symmetric key derived from the content of each chunk,
so that duplicate data chunks are deterministically encrypted to the duplicate encrypted chunks
that can be removed by deduplication. Another class of approaches is encrypted local compression
[18, 36, 52, 73], which performs local compression on data chunks (which can be first padded with
dummy bytes to hide chunk lengths) and encrypts the compressed data chunks into the encrypted
chunks of smaller lengths than without local compression.

We argue that existing approaches on combining data reduction and encryption remain limited
in improving storage savings. First, existing approaches do not address delta compression, which is
shown to provide significant space savings beyond deduplication and local compression [51, 59, 72].
Second, it is infeasible to extend existing approaches with additional data reduction techniques. For
example, after encrypted deduplication, the remaining non-duplicate encrypted chunks cannot be
further delta- or local-compressed, as encryption transforms the chunk data into a scrambled form
that destroys the content redundancy within a chunk. To our knowledge, combining all three data
reduction techniques (i.e., deduplication, delta compression, and local compression) and encryption
remains unexplored in the literature.
We propose EDRStore, an outsourced storage system that supports deduplication, delta com-

pression, and local compression for storage savings, and further combines them with encryption
for data confidentiality. EDRStore carefully designs the data reduction workflow to make it ap-
plicable to encrypted data. It designs new key generation and encryption schemes that preserve
the content similarity of data chunks after encryption for deduplication and delta compression. It
also designs selective local compression, such that a client only locally compresses the non-similar
data chunks for stable storage savings, while the remaining similar data chunks are encrypted and
delta-compressed in the cloud for higher storage savings. Note that EDRStore makes a trade-off
between storage savings and data confidentiality by allowing delta compression on encrypted
similar chunks. We discuss its security guarantees and limitations (§5).
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We evaluate EDRStore using six real-world datasets that resemble backup workloads. EDRStore
has significant storage savings over encrypted deduplication, encrypted local compression, and a
mix of both (by up to 6.8×, 19.7×, and 2.7×, respectively), while incurring moderate performance
overhead (e.g., 22.7% of upload throughput drop) compared with data reduction on plaintext storage
without encryption.

We open-source our EDRStore prototype at https://github.com/adslabcuhk/edrstore.

2 BACKGROUND AND PROBLEM
We present an overview of existing data reduction techniques (§2.1). We discuss how to possibly
extend data reduction with encryption and pose the challenges (§2.2).

2.1 Overview of Data Reduction Techniques
In this work, we consider three data reduction techniques: deduplication, delta compression, and
local compression.

Deduplication. Deduplication has been widely deployed (e.g., [21, 25, 41, 42, 65, 75]) to remove
duplicate content from storage. We consider a deduplicated storage system that divides file data into
non-overlapping variable-size chunks using content-defined chunking [54], so that deduplication
remains effective even under content shifts. Each chunk is identified by a fingerprint computed
from the cryptographic hash of the chunk content. The storage system keeps a key-value store,
called the fingerprint index, to track the fingerprints of all currently stored chunks. It stores a chunk
only if the chunk fingerprint is new to the fingerprint index (assuming that hash collisions of
non-duplicate chunks are unlikely [15]), and hence there exists only one physical copy for duplicate
chunks with the same fingerprint.

Delta compression. To achieve additional storage savings, prior studies [51, 59, 67, 68, 72] further
apply delta compression to similar chunks after deduplication; by similar, we mean that the chunks
are non-duplicate but have large fractions of the same content with changes in only a few chunk
regions. Delta compression aims to remove the same byte-level content of similar chunks and
record their differences.
The feature-based approach [16, 59, 72] is often used to identify similar chunks. It extracts one

[16] or multiple [59, 72] features from each chunk to characterize the chunk content. For example,
a feature can be the maximum Rabin fingerprint over all sliding windows of the chunk content,
such that small changes to the chunk content are unlikely to perturb the feature value [59]. It also
keeps a key-value store, called the feature index, to track the features of each first occurred chunk
(called the base chunk) that contains the feature. For each new chunk to be stored, the feature-based
approach queries the feature index to find the base chunk that has the most common features with
the new chunk (and the number of common features exceeds some pre-specified threshold). If the
base chunk is found (i.e., the new chunk is similar to the selected base chunk), it compresses the
new chunk with the corresponding base chunk with delta encoding [43, 62] to form a delta chunk,
whose size is typically smaller than the new chunk; otherwise, if such a base chunk is unavailable,
the new chunk is stored as a base chunk.

Local compression. Chunk data often has redundant patterns with low entropy (a measure in
information theory). Local compression (e.g., Zstandard [20] and DEFLATE [22]) can encode such
chunk data into smaller-size codes without information loss. It is applied to both base chunks and
delta chunks after deduplication and delta compression.
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2.2 Extending Data Reduction with Encryption
Each client first encrypts the original data chunks (i.e., plaintexts) into encrypted chunks (i.e., ci-
phertexts) and stores only the encrypted chunks in the cloud. We review two classes of approaches
that are well-studied in the literature, namely encrypted deduplication and encrypted local com-
pression. Both classes of approaches extend data reduction with encryption to achieve both data
confidentiality and storage efficiency in outsourced storage, yet we argue that they are limited in
different aspects and cannot be readily extended to support all three data reduction techniques (i.e.,
deduplication, delta compression, and local compression).
Encrypted deduplication.We refer to the combination of encryption and deduplication as en-
crypted deduplication [13, 14, 23], which performs chunk-based encryption in a client for data
confidentiality, followed by deduplication in the cloud for storage efficiency.Message-locked encryp-
tion (MLE) [14] is the most known cryptographic primitive for encrypted deduplication, in which
each data chunk is encrypted with a key (called the MLE key) derived from the chunk content with
some deterministic function. It encrypts duplicate data chunks (from the same or different clients)
to duplicate encrypted chunks, which can be removed by deduplication in the cloud. One MLE
instantiation is convergent encryption [23], which uses the chunk fingerprint (i.e., the cryptographic
hash of the chunk content) as the MLE key.
MLE is vulnerable to offline brute-force attacks [13], in which an adversary enumerates all

possible data chunks, derives the corresponding MLE keys via the deterministic function, and infers
if a data chunk is mapped to any stored encrypted chunk. Server-aided MLE [13] defends against
offline brute-force attacks by deriving an MLE key through a dedicated key server, which introduces
a global secret that is known only to the key server in MLE key generation. If the global secret is
secure, it is infeasible for the adversary to derive an MLE key of a data chunk. Furthermore, the
key server can be extended with (i) key generation based on the oblivious pseudorandom function
(OPRF) [49], which converts a data chunk into a blinded fingerprint, such that the key server is
prevented from learning the client’s input data chunks while still being able to return the same MLE
key for duplicate data chunks; and (ii) rate-limiting of key generation, which prevents malicious
clients from launching online brute-force attacks by issuing too many key generation requests. In
this work, we use server-aided MLE as the encrypted deduplication component in EDRStore.
However, there will be limited storage savings by applying delta or local compression to MLE-

encrypted chunks. First, similar (but non-duplicate) data chunks are assigned with different MLE
keys, so encryption will destroy the content similarity among the encrypted chunks. Also, encryp-
tion forms high-entropy encrypted chunks, which prohibit local compression for further storage
savings.

Note that a recent work [19] proposes to use the same MLE key to encrypt similar chunks based
on bitwise-XOR operations, so as to support delta compression on encrypted chunks. We argue
that such an approach has major security holes (§8).
Encrypted local compression. As encrypted chunks cannot be readily compressed, encryption
should be done after local compression: a client first applies local compression to each data chunk,
encrypts the compressed data chunk, and uploads the encrypted compressed chunk to the cloud
[18, 73]. However, encrypting a compressed data chunk directly can cause length leakage, as the
length of the encrypted compressed data chunk can disclose the compressibility of its original data
chunk. An adversary can also launch side-channel attacks via length leakage [1, 18, 36, 52]. For
example, if two encrypted chunks have similar sizes, they are likely to be originating from the data
chunks with similar content [18].
To hide the length information, it is critical to pad random dummy bytes to a compressed data

chunk before encryption, but at the expense of additional space. On the other hand, random padding
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prohibits deduplication over compressed chunks, since duplicate data chunks could be padded with
distinct dummy bytes to become unique data chunks, which cannot be removed by deduplication.

Data reduction before encryption. Recall that encrypted deduplication and encrypted local
compression cannot be readily extended to support delta compression, as encryption destroys the
content redundancy of a chunk (§1). One naïve solution is to apply data reduction before encryption:
a client first applies deduplication, delta compression, and local compression in sequence to the data
chunks, encrypts the reduced output, and uploads the encrypted output to the cloud. This solution
has two drawbacks. First, it sacrifices the storage savings from cross-client deduplication, since each
client cannot access the data chunks from other clients but can only perform deduplication locally.
Second, the client needs to keep the fingerprint index for deduplication as well as the feature index
and base chunks for delta compression, leading to significant management overhead (especially for
large base chunks). Thus, deduplication and delta compression should be performed in the cloud,
yet the cloud can only receive encrypted chunks due to confidentiality concerns. In summary, it is
non-trivial to combine all three data reduction techniques with encryption to achieve both storage
efficiency and data confidentiality for outsourced storage.

3 DESIGN OVERVIEW
We provide a high-level design overview for EDRStore. We state the design goals (§3.1), EDRStore’s
architecture (§3.2), and the threat model (§3.3).

3.1 Design Goals
EDRStore supports encrypted data reduction for multiple clients to securely outsource data storage
to a cloud. It targets backup workloads, which have high content redundancy [59, 63], and each
client uploads multiple versions of backups to the cloud. It supports the basic upload (i.e., storing a
backup in the cloud) and download (i.e., restoring a backup from the cloud) operations. We do not
specifically consider the overwrite and append operations, while both of them can be viewed as
special cases of uploads: an overwrite operation means to upload a new backup that is modified
from the previous backup by changing the contents of some chunks, while an append operation
implies that EDRStore uploads a new backup with the new content added to the end of the previous
backup. EDRStore applies data reduction to the new backup to achieve storage savings.

We design EDRStore with the following goals: (i) storage savings, which combine deduplication,
delta compression, and local compression to remove content redundancy; (ii) data confidentiality,
which protects outsourced data from unauthorized access (see §3.3 for details); (iii) high performance,
which adds small performance overhead compared with data reduction on plaintext data chunks;
(iv) easy deployment, which supports deployment in commodity servers and modern cloud storage
providers without specialized hardware (e.g., SGX for deduplication [47, 55, 70] or GPU for delta
compression [51]); and (v) reliability, which keeps client states in the cloud to resist client crashes.

3.2 Architecture
EDRStore extends server-aided MLE to support delta compression and local compression, as shown
in Figure 1. There are three main entities in EDRStore: one or multiple clients, a key server, and a
cloud. EDRStore applies local compression before encryption on the client side, while performing
deduplication followed by delta compression in the cloud, so as to offload the management overhead
for base chunks and index structures from clients (§2.2). Also, it maintains a dedicated key server
as in server-aided MLE for key generation (§2.2).

The cloud stores the encrypted chunks of a backup originating from a client in its storage pool.
Each backup is associated with two metadata files: (i) a file recipe, which lists the fingerprints of all
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Fig. 1. EDRStore’s architecture.

encrypted chunks in the backup for reconstruction, and (ii) a key recipe, which lists the secret keys
of encrypted chunks in the backup for decrypting the encrypted chunks on the client side. Note
that the key recipe is encrypted by the client’s master key for protection. For a backup, the client
uploads the key recipe along with the encrypted chunks to the cloud, while the cloud generates the
file recipe based on the received encrypted chunks.
Deployment. EDRStore is applicable for an organization that plans to securely outsource the
backup management for its clients to a remote cloud storage service. The organization can deploy a
virtual machine or container instance in the cloud to perform data reduction on the outsourced data
for storage efficiency. It can deploy the key server in a local server that is owned by the organization
for ease of management, or through a semi-trusted third-party service that is independent of the
cloud storage service [13].

3.3 Threat Model
We consider an honest-but-curious adversary that aims to infer the content of outsourced data
without modifying the storage protocols. The adversary can compromise the cloud, one or multiple
clients, and the key server in an attempt to infer the content of outsourced data. Specifically,
the adversary can compromise the cloud and access the content and metadata (e.g., size) of each
encrypted chunk stored in the cloud. Also, the adversary can compromise one or multiple clients
and access the original data chunks and keys of the compromised clients. Furthermore, since
EDRStore deploys a dedicated key server for key management as in server-aided MLE [13] (§3.2),
the adversary can compromise the key server to infer chunk information during key generation;
note that it has the same adversarial capability as described in the previous work [13]. In §5, we
discuss how EDRStore protects the chunk content in such adversarial scenarios. Note that EDRStore
is robust against chunk-inconsistency attacks (§4.3), so as to preserve data integrity.
One major goal of EDRStore is to enable delta compression on encrypted similar chunks (§4.1)

to achieve the maximum possible storage savings, while mitigating the leakage of information
(including the chunk content and the chunk length after local compression [1, 18, 36, 52]). Note that
delta compression on encrypted similar chunks inevitably leaks information about the similarity
of these chunks. In §5, we elaborate on the security limitations of EDRStore and argue that such
limitations have limited practical impact.

Our threat model further makes the following assumptions. First, all communication channels in
EDRStore are protected (e.g., by SSL/TLS) against eavesdropping and tampering. Second, EDRStore
is robust against side-channel attacks by performing deduplication and delta compression in the
cloud [29, 40, 48], so that a malicious client cannot feasibly infer the content of a victim client via the
deduplication and delta compression patterns. Third, the key server can rate-limit key generation
requests [13] to defend against online brute-force attacks and can also be extended with multiple
key servers to address the single-point-of-attack [24, 71]. Fourth, due to the deterministic nature
of encrypted deduplication (i.e., duplicate data chunks are always mapped to duplicate encrypted
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chunks), an adversary can launch frequency analysis and learn the occurrence frequencies of
encrypted chunks [39]. We can mitigate such frequency leakage by encrypting duplicate data
chunks with different keys subject to a storage blowup requirement [71]; we pose this extension as
our future work. Finally, EDRStore can deploy existing defense mechanisms against traffic analysis
[29] and data corruption [11, 33].

4 DETAILED DESIGN
Weelaborate on threemajor design schemes of EDRStore (§4.1-§4.3) and describe its upload/download
workflows (§4.4).

4.1 Similarity-aware Key Generation
Recall that server-aided MLE deterministically generates the same MLE key only for duplicate data
chunks (§2.2). We extend server-aided MLE with similarity-aware key generation, which generates
the same key for not only duplicate data chunks, but also similar (non-duplicate) data chunks.
Figure 2 depicts the similarity-aware key generation approach. Our idea is to let the key server
compare the features of data chunks to identify similar chunks and return the same key seed for
each set of similar chunks. The client locally generates the key of each chunk based on the key
seed, while the key server cannot learn the information of both the client’s data chunk and the
resulting keys (this is a major security requirement of server-aided MLE).
Specifically, for each data chunk 𝑀 , a client derives a set of features {𝑓𝑖 } (e.g., three features

[72]) from the content of𝑀 and sends the features {𝑓𝑖 } to the key server. The key server maintains
a key seed index, a key-value store that tracks each feature and the corresponding key seed. It
checks the key seed index based on {𝑓𝑖 }, and returns the key seed 𝑆 that matches the most number
of features in {𝑓𝑖 } to the client. If none of {𝑓𝑖 } is found in the key seed index (i.e., no existing
chunk is similar to𝑀 , and𝑀 should be a base chunk (§2.1)), the key server generates a new key
seed 𝑆 = H(𝑓1 | |...| |𝑓𝑖 | |\ ) for 𝑀 , where \ is the global secret of the key server [13] and | | is the
concatenation operator. It adds the mapping of each 𝑓𝑖 to 𝑆 into the key seed index, and returns 𝑆 .

The key server cannot learn the chunk content from a feature. First, a feature is a one-way hash
that cannot be feasibly inverted to the chunk content. Second, a feature is a weak hash of the chunk
content with many hash collisions, which make the key server difficult to identify a chunk from
the many-to-one mapping of chunks to features [71].

One design challenge is how a client should generate the key from the returned key seed, while
ensuring that the key server cannot learn the key from the corresponding key seed; note that if we
directly derive a key based on the key seed, the key server can easily learn the key. We propose
to generate the key of a chunk based on not only the corresponding key seed, but also the first
𝑃 bytes of the original chunk content, where 𝑃 is a configurable parameter. Our rationale is that
similar chunks only have a small content difference that is unlikely to be sampled, and hence they
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remain to have the same key with a high probability. Also, the key server cannot infer such keys
without knowing the original chunk content. Specifically, upon receiving a key seed 𝑆 , the client
samples the first 𝑃 bytes of the chunk𝑀 (denoted by𝑀), and computes the key 𝐾 = H(𝑆 | |𝑀).

The value of 𝑃 represents a trade-off between the degree of data confidentiality and the storage
savings through the delta compression of similar chunks. A larger 𝑃 means that more bytes are
sampled from the original chunk content for key generation. It not only makes the key server
more difficult to infer the key, but also makes similar chunks less likely to be encrypted by the
same key (as any content difference in their first 𝑃 bytes will lead to different keys). From the data
confidentiality perspective, a leaked key only involves a smaller fraction of similar chunks in a
larger 𝑃 ; in the extreme case, when 𝑃 is the same as the chunk size, the encryption mode reduces
to MLE. From the storage efficiency perspective, a larger 𝑃 reduces the likelihood that two similar
chunks are encrypted by the same key and their encrypted outputs cannot be delta-compressed.
We empirically study the trade-off in §7.2. By default, we choose 𝑃 = 32 bytes.

Note that the amount of network traffic between a client and the key server during key generation
is limited. Based on our default configuration, each data chunk has an average size of 4 KiB. A
client generates three features (8 bytes each) and uploads 3 × 8 = 24 bytes per data chunk to the
key server, which returns a 32-byte key seed. The total network traffic of the one-round interaction
takes only (24 + 32) bytes / 4 KiB = 1.4% of logical data.

4.2 Two-phase Encryption
To support deduplication and delta compression (performed in the cloud) on encrypted chunks,
EDRStore builds on the block cipher [37] to encrypt each data chunk independently as in MLE.
However, the encryption approach in MLE will pose security risks to EDRStore. To this end, we
propose two-phase encryption to address the security issue.

Encryption inMLE.We first explain how encryption works in MLE and why it is inappropriate for
EDRStore. MLE encrypts each data chunk in counter (CTR) mode with a fixed initialization vector
(IV) [14] and preserves the deduplication capability for duplicate data chunks after encryption.
Specifically, each data chunk𝑀 (e.g., 4 KiB long) can have multiple blocks, the basic units in block
cipher (e.g., 16 bytes long in AES encryption). MLE initializes both the IV and counter as zero,
while the counter is incremented by one across each block. It generates a mask based on the key, IV,
and the counter via the encryption function, such that the mask has the same length as𝑀 . Finally,
it combines 𝑀 and the mask via a bitwise XOR operation to generate the encrypted chunk. By
deriving the same key for duplicate data chunks, MLE encrypts them into duplicate encrypted
chunks to preserve the deduplication capability.
To support delta compression, we may naïvely ensure that the same key (and hence the same

mask under the same IV and counter initializations) is used for encrypting similar data chunks via
similarity-aware key generation (§4.1). As similar data chunks have large fractions of duplicate
blocks, the resulting encrypted chunks also have large fractions of duplicate blocks that can be
removed by delta compression. However, this naïve approach poses a security hole due to the reuse
of the same key and IV for distinct data chunks. Specifically, an adversary can remove the mask
with a bitwise XOR operation of the corresponding encrypted chunks and learn the XOR output of
the distinct data chunks even without knowing the key.
For example, consider two similar data chunks𝑀 = 𝑏1 | |𝑏2 and �̂� = 𝑏1 | |𝑏2, where 𝑏1, 𝑏2, and 𝑏2

are distinct data blocks and | | is the concatenation operator (i.e., 𝑀 and �̂� share the same first
data block but differ in their second blocks). The naïve approach generates two masks 𝑒1 and 𝑒2
based on the key, IV, and counter, and encrypts𝑀 and �̂� into the encrypted chunks 𝐶 = 𝑐1 | |𝑐2 and
𝐶 = 𝑐1 | |𝑐2, respectively, where 𝑐1 = 𝑏1 ⊕ 𝑒1, 𝑐2 = 𝑏2 ⊕ 𝑒2, and 𝑐2 = 𝑏2 ⊕ 𝑒2, where ⊕ is the bitwise
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XOR operator. Suppose that an adversary has access to 𝐶 and 𝐶 . It knows that both 𝐶 and 𝐶 have
the same first data block, but does not know the content of the first data block; however, it not
only knows that their second data blocks are distinct, but can also infer the relationships of data
patterns via 𝑐2 ⊕ 𝑐2 = 𝑏2 ⊕ 𝑏2. Note that the security hole does not exist in MLE, since the same key
is only used for duplicate (rather than distinct) data chunks.

Our solution. Two-phase encryption augments the CTR mode with an additional encryption layer
in electronic codebook (ECB) mode, in which each block is encrypted independently. Suppose
that the encryption function is secure. Then two original blocks with any different bit can be
encrypted into statistically different encrypted blocks (i.e., the block-level diffusion property [58]).
Our security insight is that for the non-duplicate encrypted blocks obtained from the CTR mode, we
further encrypt them in ECB mode into statistically distinct encrypted blocks, so that the bitwise
XOR operation of the encrypted blocks can no longer leak the content patterns of the original data
blocks.
The details of two-phase encryption are elaborated as follows. To encrypt a data chunk𝑀 , the

client first partitions𝑀 into a sequence of data blocks 𝑏1, 𝑏2, . . . , 𝑏𝑚 , where𝑚 is the total number
of blocks in𝑀 . In the first phase, for each data block 𝑏𝑖 (1 ≤ 𝑖 ≤ 𝑚), the client computes the mask
𝑒𝑖 = E(𝐾, (𝐼𝑉 | |𝑖)) and encrypts 𝑏𝑖 in CTR mode into 𝑐𝑖 = 𝑒𝑖 ⊕ 𝑏𝑖 , where E(·) is the encryption
function with the key and block as inputs,𝐾 is the key of𝑀 generated in §4.1, | | is the concatenation
operator, 𝑖 is the counter in CTR mode, and ⊕ is the bit-wise XOR operator. In the second phase,
the client encrypts 𝑐𝑖 in ECB mode into 𝑐 ′𝑖 = E(𝐾, 𝑐𝑖 ), and forms the whole encrypted chunk
𝐶 = 𝑐 ′1 | |𝑐 ′2 | | . . . | |𝑐 ′𝑚 . To decrypt the encrypted chunk, the client computes each 𝑐𝑖 = D(𝐾, 𝑐 ′𝑖 ) (where
D is the decryption function with the key and block as inputs), generates the mask 𝑒𝑖 as above, and
recovers the data block 𝑏𝑖 = 𝑐𝑖 ⊕ 𝑒𝑖 , and hence𝑀 .

Two-phase encryption has several practical properties. First, although encryption in ECB mode
is notoriously known to leak the occurrence frequency of a data block, two-phase encryption does
not have the frequency leakage issue as each block is protected by the incremental counter in CTR
mode [26]. Second, it preserves the effectiveness of delta compression, since the duplicate blocks at
the same positions of similar data chunks are mapped into duplicate encrypted blocks. Finally, it is
parallelizable at the block level, as both CTR and ECB modes encrypt blocks independently. Our
evaluation shows that two-phase encryption is not a performance bottleneck of EDRStore (Exp#7
in §7.4). In §5, we analyze the security guarantees of two-phase encryption.

4.3 Selective Local Compression
Recall that EDRStore performs local compression before delta compression (§3.2). However, applying
delta compression directly to locally compressed chunks brings limited storage savings, since local
compression encodes similar chunks into distinct compressed chunks with high entropy (§2.1).
Selective local compression aims to maximize the possible storage savings via both delta com-

pression and local compression under encryption. Its idea is that each client selectively performs
local compression on a subset of data chunks that are unlikely to gain significant storage savings
via delta compression, while leaving the remaining data chunks uncompressed so that they can
be delta-compressed in the cloud. Specifically, the client uploads encrypted uncompressed chunks
(i.e., the encrypted output of uncompressed data chunks) and encrypted compressed chunks (i.e.,
the encrypted output of compressed data chunks). The cloud performs delta compression on each
set of encrypted chunks. For encrypted uncompressed chunks, delta compression should bring
significant storage savings; for encrypted compressed chunks, delta compression can also bring
slight storage savings. Note that content similarity across encrypted chunks is preserved due to
similarity-aware key generation (§4.1) and two-phase encryption (§4.2).
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Fig. 3. Selective local compression.

Design requirements. Our selective local compression design should satisfy the following re-
quirements. First, it should offload delta compression from a client to the cloud, so that a client does
not need to keep a myriad of base chunks for delta compression and any client crash does not cause
data loss (§3.1). Second, in some cases (see below), a client needs to upload a pair of encrypted
compressed and uncompressed chunks, so our design should be secure against a malicious client
that uploads inconsistent chunks (i.e., the pair of encrypted compressed and uncompressed chunks
is derived from different data chunks) to erase other clients’ data by abusing deduplication [13]. Fi-
nally, while the cloud keeps encrypted uncompressed chunks as base chunks for delta compression,
our design should have policies to limit the storage of such base chunks in the cloud.
Design details. To address the above design requirements, our idea is that the cloud maintains
the base chunks for the delta compression of encrypted uncompressed chunks on a per-client
basis, based on the assumption that content differences are often derived from different versions
of a backup series from the same client [66, 67, 77, 78]. Also, a client tracks the features of the
encrypted uncompressed chunks. Such tracked features provide “hints” for the client to determine
whether a data chunk needs to be locally compressed. Note that EDRStore still performs cross-client
deduplication, even though it performs delta compression on uncompressed chunks for each client.
Figure 3 depicts the idea of selective local compression. Each client manages a version index,

a key-value store that tracks the features of encrypted uncompressed chunks uploaded by the
client, so as to decide whether an encrypted uncompressed chunk uploaded by the client can be
delta-compressed with respect to any similar encrypted uncompressed chunks in the cloud, or
the client should first perform local compression on the data chunks. Each feature is mapped to
the version number of the most recent backup that contains the feature, so that the cloud can
manage the base chunks (see version-aware chunk management below). Note that the version
index is robust to client crashes, since it can be recovered from the features of the base chunks
stored in the cloud. Also, the cloud manages a per-client base chunk index, a key-value store that
tracks all features and their corresponding encrypted uncompressed chunks (i.e., base chunks)
uploaded by a client, so as to perform delta compression on any subsequent chunks uploaded by
the client. Finally, the cloud manages a feature index, a key-value store that tracks the features
of encrypted compressed chunks and their fingerprints, so as to perform delta compression for
encrypted compressed chunks.

Specifically, for each data chunk𝑀 (which is originally uncompressed), a client first encrypts it
into an encrypted uncompressed chunk 𝐶 via two-phase encryption (§4.2). It also extracts a set of
features {𝑔𝑖 } from 𝐶 . If any feature 𝑔𝑖 exists in the version index, the client sends (𝐶 , tag) to the
cloud for deduplication and delta compression; the tag is used in dual-fingerprint deduplication (see
below). Otherwise, if none of the features in {𝑔𝑖 } exists, the client locally compresses𝑀 , generates
the dummy padding bytes 𝐵 based on the fingerprint of 𝑀 and encrypts 𝑀 | |𝐵 (where | | is the
concatenation operator) into an encrypted compressed chunk 𝐶 ′; note that 𝐶 ′ generally has a
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smaller size than 𝐶 . Padding is necessary to hide the lengths of compressed chunks (§2.2), while
our padding approach ensures that duplicate chunks have the same padding data to preserve the
deduplication capability. Note that even though we pad deterministic data to duplicate chunks,
since the padding data is randomly generated based on the fingerprint of each data chunk via a
hash function (§6), the security is not compromised as the cloud cannot infer the contents and
length of each original compressed chunk.

The client then sends (𝐶 , 𝐶 ′) to the cloud. It further adds all features {𝑔𝑖 } into the version index,
such that 𝐶 may later serve as a base chunk for later uploaded similar encrypted uncompressed
chunks, while 𝐶 ′ is the chunk that is persistently stored in the cloud. We choose to upload both
𝐶 and 𝐶 ′ to trade small network bandwidth overhead for significant storage savings. Specifically,
the uploads of both 𝐶 and 𝐶 ′ occur only when 𝐶 does not have any similar chunk in previous
backups. This is expected to be uncommon, as adjacent backups tend to have only small changes
due to locality [65, 75]. On the other hand, 𝐶 can serve as a base chunk to delta-compress many
following chunks for significant storage savings. Also, when𝐶 is expired and evicted from the base
chunk index (see below),𝐶 ′ serves as the persistent copy of the corresponding chunk and preserves
storage efficiency (note that 𝐶 ′ has a smaller size than 𝐶 since it has been locally compressed). Our
evaluation shows that the additional network traffic remains limited (Exp#5 in §7.3).
The cloud now receives either (𝐶 , tag) or (𝐶 , 𝐶 ′) from a client. It first performs deduplication

on 𝐶 . If 𝐶 is a duplicate chunk, the cloud stores a reference to its physical copy (and discards 𝐶 ′ if
any). Otherwise, if 𝐶 is a non-duplicate chunk, there are two cases. In the first case, if the cloud
receives (𝐶 , tag), it selects the most similar base chunk in the base chunk index based on the set of
features {𝑔𝑖 } of 𝐶 and performs delta compression on 𝐶 with respect to the selected base chunk. It
stores the delta chunk of 𝐶 in the storage pool. In the second case, if the cloud receives (𝐶 , 𝐶 ′), it
adds 𝐶 (which is treated as a base chunk) and its features to the base chunk index. Also, the cloud
checks the feature index to see if 𝐶 ′ can be delta-compressed with respect to any currently stored
encrypted compressed chunk. It stores either 𝐶 ′ or its delta chunk in the storage pool.
Defense against chunk-inconsistency attacks.Amalicious clientmay launch chunk-inconsistency
attacks, by generating inconsistent encrypted compressed and uncompressed chunks to compromise
the uploads from other clients. Specifically, it uploads a valid encrypted uncompressed chunk 𝐶
and a forged encrypted compressed chunk 𝐶 ′

𝑓
. Suppose that 𝐶 is a non-duplicate chunk. The cloud

refers the fingerprint of𝐶 to the forged𝐶 ′
𝑓
(or its delta chunk). Later, a victim client uploads (𝐶 ,𝐶 ′),

where 𝐶 is now a duplicate chunk and 𝐶 ′ is a valid encrypted compressed chunk corresponding to
𝐶 . The cloud will discard 𝐶 ′ by deduplication and wrongly refer 𝐶 to the forged physical copy 𝐶 ′

𝑓
.

When the victim client downloads 𝐶 , it will receive the forged 𝐶 ′
𝑓
.

To defend against chunk-inconsistency attacks, we propose dual-fingerprint deduplication, which
performs deduplication based on both the fingerprints of 𝐶 and 𝐶 ′. Thus, the correct pair (𝐶 , 𝐶 ′)
uploaded by a benign client is considered to be different from the forged pair (𝐶 , 𝐶 ′

𝑓
). Note that

dual-fingerprint deduplication does not incur extra storage overhead if the uploaded encrypted
chunks are consistent.
We elaborate on dual-fingerprint deduplication as follows. Each client sets tag as H(𝐶 ′) and

uploads (𝐶,H(𝐶 ′)) if there exists any feature in the client’s version index. When the cloud receives
(𝐶,H(𝐶 ′)) or (𝐶,𝐶 ′), it derives the dual fingerprint, defined as H(H(𝐶) | |H(𝐶 ′)), and treats 𝐶 as a
duplicate chunk only when the dual fingerprint is new. It also manages the fingerprint index that
tracks the dual fingerprints of the existing encrypted chunks.
Version-aware chunk management. As the cloud stores more backups, the base chunk index
accumulates a large number of base chunks and grows significantly in size. While storing more base
chunks in the base chunk index facilitates delta compression, it also incurs high storage overhead,
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which may negate the overall storage savings (§7.3). Thus, our goal is to keep a sufficiently small
base chunk index without compromising the effectiveness of delta compression.
EDRStore introduces version-aware chunk management to keep only the base chunks from the

recent backup versions. Our rationale is that a backup version is often derived from themodifications
from the recent backup versions, so adjacent backup versions tend to have more similar chunks
[66, 67, 77, 78]. Specifically, EDRStore keeps only the base chunks of the recent 𝑁 (𝑁 = 1 by default)
backups in the base chunk index and evicts a base chunk if it has not appeared or been used in the
recent 𝑁 versions. Each client manages features in the version index. For each feature, if it exists
in the version index, the client updates the version number of the feature to the current version;
otherwise (i.e., the feature is new), the client inserts the feature into the version index with the
current version number. The client regularly checks the whole version index (say, at the end of
each backup upload) and deletes the entries whose version numbers differ from the current version
by more than 𝑁 . It sends the expired features in an eviction list to the cloud, which then evicts
the base chunks with the expired features. Note that even if the base chunk has been evicted from
the version index, the original chunk can still be restored since its encrypted compressed chunk is
stored in the storage pool.

4.4 Putting It All Together
We describe EDRStore’s upload and download workflows.
Upload. Suppose that a client uploads a backup. It divides the backup into data chunks and
computes their fingerprints and features. For each data chunk, it obtains a key seed from the key
server and generates the corresponding key via similarity-aware key generation (§4.1). It encrypts
each data chunk, either in locally compressed form (which is further padded with dummy bytes
before encryption) or in uncompressed form, via two-phase encryption (§4.2) and selective local
compression (§4.3). It uploads encrypted chunks (derived from compressed or uncompressed data
chunks) and tags to the cloud. Also, the client creates a key recipe for the backup, encrypts the
key recipe with its master key, and uploads the key recipe to the cloud. Finally, the cloud performs
deduplication and delta compression for the encrypted chunks (§4.3), and creates a file recipe on
the encrypted chunks for the backup.
Download. Suppose that a client downloads a backup. The cloud first retrieves the encrypted
chunks based on the file recipe; if an encrypted chunk, say 𝐶𝑑 , has been delta compressed (i.e., its
delta chunk is stored and its fingerprint index records the fingerprint of its base chunk), the cloud
retrieves the corresponding base chunk to reconstruct 𝐶𝑑 . There are three cases to consider for
reconstructing 𝐶𝑑 .
• Case 1:𝐶𝑑 is delta-compressed with respect to an encrypted uncompressed chunk, say𝐶,
that remains in the base chunk index. The cloud reads𝐶 from the base chunk index, performs
delta decompression to reconstruct 𝐶𝑑 , and sends 𝐶𝑑 to the client.

• Case 2:𝐶𝑑 is delta-compressed with respect to an encrypted uncompressed chunk, say𝐶,
that has been evicted from the base chunk index. The cloud reads the encrypted compressed
chunk, say 𝐶 ′, that corresponds to the base chunk from the storage pool and sends 𝐶 ′ to the
client. The client first decrypts and local-decompresses 𝐶 ′, and then re-encrypts the result into
an encrypted uncompressed chunk 𝐶 . It then performs delta decompression to reconstruct 𝐶𝑑 .

• Case 3: 𝐶𝑑 is delta-compressed with respect to an encrypted compressed chunk 𝐶 ′. The
cloud reads𝐶 ′ from the storage pool, performs delta decompression to reconstruct𝐶𝑑 , and sends
𝐶𝑑 to the client.
In short, the cloud returns the encrypted chunks and the encrypted key recipe to the client. The

client first decrypts the key recipe based on its master key, reconstructs the encrypted chunks (i.e.,
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Case 2 above) if necessary, and then decrypts each encrypted chunk based on the secret key in the
key recipe. It removes the padded bytes and local-decompresses the compressed data chunks. It
assembles all original uncompressed data chunks into the backup.

5 SECURITY IMPLICATIONS
5.1 Guarantees
We discuss the security guarantees achievable by EDRStore against an adversary based on our
threat model (§3.3). We consider three adversarial scenarios.
• Case 1: An adversary has access to only the cloud. The adversary can access the encrypted
key recipes and encrypted chunks, but it cannot learn any key from an encrypted key recipe
(protected by the client’s master key). Also, from each encrypted chunk, it cannot learn the
original data due to two-phase encryption (§4.2) and the actual length of the compressed data
chunk due to padding (§4.3). Furthermore, it cannot feasibly launch chunk-inconsistency attacks
due to dual-fingerprint deduplication (§4.3).

• Case 2: An adversary has access to both the cloud and some clients. In addition to the
cloud, the adversary also has access to some clients and further obtains their data chunks and
keys. However, it cannot learn any non-similar data chunks that are encrypted by different keys.

• Case 3: An adversary has access to the key server. An adversary that has access to the key
server additionally learns the global secret as well as the key seed for each set of similar chunks.
However, it cannot learn unpredictable chunks whose content cannot be enumerated [13], since
each key is generated based on a sampled fraction of the chunk content (§4.1). Also, it cannot
readily identify the key generation for a data chunk, since each feature is derived based on a
weak hash function (i.e., hash collisions are allowed for different data chunks) hash function
(§4.1).

5.2 Limitations
We discuss the security limitations of EDRStore.
Leakage of duplicate blocks. Since EDRStore keeps the duplicate blocks at the same positions of
similar data chunks under two-phase encryption (§4.2), the adversary can identify such duplicate
blocks from similar data chunks. Such leakage is inevitable in order for delta compression to
be viable for encrypted similar chunks. Prior studies [27, 28] also identify such leakage in disk
encryption (e.g., encrypting the values stored in the same sector), yet the practical damage remains
an open question.
Leakage of compression relationships.When a client uploads a pair of encrypted chunks derived
from the compressed and uncompressed versions of the same data chunk (§4.3), the adversary can
learn the underlying compression relationship between the encrypted chunks. We are unaware of
any attack that exploits such relationships to learn additional information, especially when both
chunks are encrypted.
Leakage of similar chunks under key compromise. EDRStore uses the same key for the
encryption of similar data chunks and allows delta compression among such encrypted similar
chunks (§4.1). It incurs the information leakage of similar data chunks if the key is compromised.
Such information leakage is inevitable if we want to support delta compression on encrypted
similar chunks. We can mitigate the leakage by trading the storage savings of delta compression
for security. Recall that each client generates the key of each chunk𝑀 based on the first 𝑃 bytes
of the original chunk content (§4.1). We can configure 𝑃 to balance the trade-off between data
confidentiality and storage savings. We evaluate the impact of 𝑃 in §7.2.
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6 IMPLEMENTATION
We prototyped EDRStore in C++ on Linux. We also implemented cryptographic operations using
OpenSSL-1.1.1 [50]. Our prototype contains about 8.7 K LoC. We highlight several implementation
details of EDRStore as follows.
Index structures. EDRStore has several index structures: the key seed index in the key server
(§4.1), the version index in each client (§4.3), and the fingerprint index, feature index, and base chunk
index in the cloud (§4.3). All indexes except the base chunk index are implemented as in-memory
hash-table using std::unordered_map in C++, while the base chunk index is implemented as a
persistent key-value store using RocksDB [45].
Note that even though a system crash causes the loss of in-memory indexes (i.e., the key seed

index, version index, fingerprint index, and feature index), it does not cause any data loss. Specifically,
the version index can be recovered from the features of the base chunks in the cloud (§4.3), while
the fingerprint index and feature index can be recovered from the encrypted chunks stored in the
cloud. The loss of the key seed index also does not cause any data loss since a client can still recover
the data chunks based on the keys in the key recipes (§3.2), yet the key seed index cannot be rebuilt
since the features are derived from the original data chunks (§4.1) that are inaccessible by the key
server. The consequence of not being able to rebuild the key seed index is that the same key seeds
cannot be regenerated for similar data chunks, and hence we cannot allow the data reduction of
encrypted chunks. We can extend EDRStore to make periodic snapshots of all in-memory indexes
into persistent storage, so that the in-memory indexes can be readily rebuilt from the snapshots.
We expect that such snapshot generation incurs limited performance and storage overhead since
the indexes are generally small (§7.3).
Client. A client generates data chunks using FastCDC [69] for content-defined chunking, with the
minimum, average, and maximum chunk sizes being 4 KiB, 8 KiB, and 16 KiB, respectively. For each
data chunk, it computes the fingerprint using SHA-256, as well as three features (8 bytes each) using
Finesse [72]. It implements two-phase encryption (§4.2) using AES-256-CTR and then AES-256-ECB.
In selective local compression, the client uses Zstandard [20] for local compression. It also generates
the padding data for each compressed chunk (§4.3) using the chunk fingerprint as the random seed
of the pseudorandom number generator std::default_random_engine in C++, with a padding
length of 0-255 bytes. To allow the removal of padding data during decompression, each compressed
chunk has a 4-byte field that records the length of the original compressed chunk without padding,
such that the length is encrypted along with the chunk data via two-phase encryption. After chunk
decryption, EDRStore reads the length to remove the padding data, followed by local decompression
to recover the original data chunk.
Key server. The key server maintains a key seed index to track the feature of each data chunk, and
a 32-byte global secret \ to generate a key seed for each base chunk (§4.1). Given the three features
{𝑓𝑖 }3𝑖=1 of a base chunk, it computes the key seed as 𝑆 = H(𝑓1 | |𝑓2 | |𝑓3 | |\ ), where H(·) is SHA-256.
Cloud. The cloud performs delta compression using Xdelta [44]. It packs both delta chunks and
encrypted compressed chunks in large storage units, called containers [41], for persistent storage;
we now set the container size as 4MiB.
Optimization. We improve the performance of our prototype using well-known optimization
approaches. For example, each client parallelizes chunking, key generation, local compression,
encryption, and uploads in multiple threads, while the key server and the cloud serve the requests
from clients in different threads. The cloud maintains an in-memory least-recently-used cache (of
size 2GiB currently) to keep the containers that are recently accessed for delta compression (on
encrypted compressed chunks) and downloads.
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Dataset Logical size Dedup Delta Local Plain
TF 23.0 GiB 1.9 4.2 2.9 22.5

DOCKER 37.8 GiB 4.0 2.2 2.0 17.9
GCC 40.0 GiB 1.9 2.9 3.0 17.0

CHROM 51.9 GiB 3.3 3.6 2.3 26.5
WEB 277.1 GiB 7.6 9.4 1.6 117.1
LINUX 335.1 GiB 2.3 8.9 2.3 47.0

Table 1. Logical sizes and data reduction ratios of plaintext datasets.

7 EVALUATION
We conduct trace-driven evaluation on EDRStore based on real-world datasets (§7.1). We evaluate
EDRStore in three aspects: the space-confidentiality trade-off (§7.2), the storage usage (§7.3), and
the upload and download performance in networked environments (§7.4). The results in §7.2 and
§7.3 are based on trace analysis, while those in §7.4 are obtained from our testbeds.

7.1 Datasets
We present the results for six real-world datasets: (i) TF, with 159 versions of Tensorflow source
code (v0.6.0 to v158.2.9.0) [6]; (ii) DOCKER, with 108 versions of Docker snapshots of Cassandra
(v2 to v4.0.5) [61] downloaded from Docker Hub [3]; (iii) GCC, with 113 versions of GCC source
code (v2.95.0 to v11.2.0) [4]; (iv) CHROM, with 100 versions of Chromium source code (v3.0 to
v22.0) [2]; (v)WEB, with 103 versions of website backups of news.sina.com, captured from June
to September in 2016 (this dataset is also used in previous work [72, 78]); and (vi) LINUX, with
489 versions of Linux kernel source code (v3.0 to v5.16) [5]. Our datasets cover various types of
workloads, including source code (TF, GCC, CHROM, and LINUX), binary snapshots (DOCKER),
and website backups (WEB). We treat each version of datasets as a backup. For each dataset, we
decompress the versions and pack them into a tar package for evaluation.

We measure the logical size (i.e., the raw data size before data reduction) and the physical size (i.e.,
the actual data size in storage after data reduction). Table 1 shows the dataset statistics when the
data chunks are stored in plaintext form without encryption based on the data reduction workflow
in [59] (abbrv. Plain). For each dataset, we report the logical size and the data reduction ratios
(measured by dividing the logical size by the physical size) of deduplication on the raw data, delta
compression on the post-deduplicated data, and local compression on the post-deduplicated and
delta-compressed data. We also report the total data reduction ratio of Plain by multiplying the
respective data reduction ratios from each data reduction technique (note that the final ratio may
slightly deviate due to rounding errors).

7.2 Space-Confidentiality Trade-off
Exp#1 (Impact of 𝑃 on storage savings and data confidentiality). We first study the impact of
𝑃 (§4.1) on the trade-off between storage savings and data confidentiality due to the encryption
of similar chunks with the same key. We vary 𝑃 from zero bytes to the chunk length (labeled as
“max”); note that when 𝑃 is the chunk length, EDRStore applies MLE to locally compressed chunks.

To measure data confidentiality, we consider an adversarial scenario where a number of keys are
compromised and the corresponding chunks encrypted by the compromised keys are leaked. We
define the leak frequency of a key as the number of logical chunks encrypted by the key. Suppose in
the worst case that the top-𝑘 keys with the highest leak frequencies are compromised. We measure
the leak ratio as the ratio between the total leak frequencies of the top-𝑘 compromised keys and the
total number of logical chunks. To measure storage savings, we measure both the total reduction
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Fig. 4. (Exp#1) Impact of 𝑃 on leak ratio.
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Fig. 5. (Exp#1) Impact of 𝑃 on total data reduction ratio and delta compression ratio.

ratio (i.e., the data reduction ratio when all data reduction techniques are enabled) and the delta
compression ratio (i.e., the data reduction ratio caused by delta compression only).
Figure 4 shows the leak ratio for different values of 𝑘 versus 𝑃 . The leak ratio decreases as

𝑃 increases. It first decreases sharply from 𝑃 = 0 to 𝑃 = 16 bytes, and its decrease becomes
less significant as 𝑃 further increases. Figure 5 shows that the total reduction ratio and the delta
compression ratio decrease as 𝑃 increases (note that the delta compression ratio becomes one for
“max”). For WEB, the leak ratios are high in general (even for “max”, which reduces to MLE) as it has
a large volume of duplicate chunks (Table 1). Such leakage for duplicate chunks can be mitigated
by encrypting them with different keys [71] (§3.3). We do not claim that the “best” 𝑃 exists, as 𝑃
represents different trade-offs between storage savings and data confidentiality. In the following,
we choose 𝑃 = 32 bytes as our default.
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Fig. 6. (Exp#2) Analysis of data reduction ratio.

7.3 Data Reduction Analysis
Exp#2 (Analysis of data reduction ratio). We evaluate the data reduction ratio of EDRStore.
Note that our analysis also includes the actual sizes of the data chunks and the base chunk index,
both of which are stored in the storage pool.

We compare EDRStore with the following baselines based on §2.2: (i) Plain, which is reported in
Table 1 and serves as an ideal (but insecure) baseline with the maximum possible data reduction.
(ii) MLE [14], which performs encrypted deduplication; (iii) TED [71], which performs tunable
encrypted deduplication to trade storage efficiency for data confidentiality; (iv) ELC (encrypted
local compression), which first performs local compression without padding on data chunks and
encrypts the compressed data chunks; and (v) ELC+MLE, which applies MLE to locally compressed
chunks and performs deduplication after ELC. For TED, we set the storage blowup factor as 1.05
(default in [71]), meaning that it stores 5% more data than MLE; for ELC+MLE, we disable padding
to make ELC and MLE compatible (§2.2).
Figure 6(a) shows the results. EDRStore achieves the highest data reduction ratio among MLE,

TED, ELC, and ELC+MLE in all datasets. For example, in LINUX, the data reduction ratio of EDRStore
is 6.8×, 7.1×, 5.4×, and 2.5× compared with those of MLE, TED, ELC, and ELC+MLE, respectively.
Overall, the data reduction ratio of EDRStore is up to 6.8×, 7.1×, 19.7×, and 2.7× compared with
those of MLE, TED, ELC, and ELC+MLE, respectively, in all datasets. Note that EDRStore only
has 33.2-66.5% data reduction ratio compared with Plain due to various reasons. First, EDRStore
performs delta compression on encrypted chunks at coarse-grained block-level granularity (§4.2),
while Plain can remove byte-level redundancy. Second, EDRStore includes the base chunk index,
which is not needed in Plain. Finally, EDRStore only keeps the base chunks from recent versions,
so a chunk cannot be delta-compressed with a similar base chunk from old versions.
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We next break down how the design choices of EDRStore contribute to data reduction. We
focus on selective local compression (on the client side) and delta compression (on the cloud side),
and consider four variants of EDRStore: (i) EDR-NoDelta, which applies local compression to all
data chunks (i.e., no selective local compression) and performs deduplication only (i.e., no delta
compression); (ii) EDR-Delta, which applies local compression to all data chunks, and performs
deduplication and delta compression on the encrypted compressed chunks; (iii) EDR-Selective,
which performs selective local compression, deduplication, and delta compression on the encrypted
uncompressed chunks, but disables delta compression on the encrypted compressed chunks; and (iv)
EDR-Full, our complete EDRStore design that performs selective local compression, deduplication,
and delta compression on all encrypted chunks. Note that both EDR-NoDelta and EDR-Delta do
not need the base chunk index, as they do not perform selective local compression (EDR-Delta only
keeps a feature index in the cloud for similarity detection).
Figure 6(b) shows the results. EDR-Delta increases the data reduction ratio of EDR-NoDelta by

17.0-121.4% due to delta compression over encrypted compressed chunks. EDR-Selective increases
the data reduction ratio over EDR-Delta (by up to 61.2% in LINUX), with the only exception in
DOCKER. The reason is that EDR-Selective keeps the base chunk index, but not in EDR-Delta.
When a dataset has limited similarity (e.g., DOCKER has the lowest data reduction ratio from
delta compression), the base chunk index can negate the storage savings from data reduction.
EDR-Full increases the data reduction ratio by 2.9-23.4% over EDR-Selective, and has the highest
data reduction ratio.
Exp#3 (Index overhead). We evaluate the overhead of index structures in EDRStore. Recall that
EDRStore has five index structures (i.e., the version index in each client, the key seed index in the
key server, as well as the fingerprint index, feature index, and base chunk index in the cloud). We
report the fractions of the size of each index structure over the logical size and over the physical
size.
Figure 7 shows the results. For the in-memory indexes (i.e., the version index, key seed index,

fingerprint index, and feature index), the major overhead mainly comes from the fingerprint index
and the feature index, with up to 5.5% and 1.5% of physical size, respectively. We can employ existing
memory-efficient indexing approaches, such as locality-preserved caching [75] for fingerprints and
the stream-informed approach [59] for features, to manage small indexes in memory, while storing
all fingerprints and features on disk.
The base chunk index has a much larger size (with up to 1.5% of logical size and up to 18.5% of

physical size), as it stores the encrypted uncompressed chunks in the storage pool. Nevertheless,
EDRStore still achieves higher data reduction than the encrypted storage baselines (see Exp#2).
Exp#4 (Impact of 𝑁 on version-aware chunk management). We evaluate the impact of 𝑁
on version-aware chunk management, where 𝑁 denotes the number of recent versions whose
encrypted uncompressed chunks are stored in the base chunk index (§4.3). We compare the data
reduction ratios with and without including the base chunk index in the physical size calculation,
so as to understand the overhead of the base chunk index for different values of 𝑁 .
Figure 8 shows the data reduction ratios versus 𝑁 for different datasets. Without including the

base chunk index in the physical size, the data reduction ratio increases with 𝑁 , as it increases
the likelihood of detecting similar chunks. However, with the base chunk index, the actual data
reduction ratio may increase with 𝑁 (e.g., in LINUX) or decrease for a large 𝑁 (e.g., in GCC and
CHROM); the latter implies that the storage overhead of the base chunk index negates the overall
storage savings. How to find the best 𝑁 for the maximum data reduction ratio is our future work.
Exp#5 (Network traffic).We evaluate the amount of network traffic being transferred when a
client uploads backup snapshots to the cloud. Recall that EDRStore sends either the uncompressed
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Fig. 7. (Exp#3) Index overhead.
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Fig. 8. (Exp#4) Impact of 𝑁 on version-aware chunk management.

chunk with its fingerprint (𝐶 , tag), or both the uncompressed and locally compressed chunks (𝐶 ,
𝐶 ′) to the cloud (4.3). Here, we mainly compare EDRStore with Plain, which sends all data chunks
in the uncompressed format to the cloud. The extra network traffic of EDRStore mainly comes
from the fingerprints (tag) and the compressed data chunks (𝐶 ′). Note that we do not compare
EDRStore with MLE, ELC, and ELC+MLE, as they do not consider delta compression.
Figure 9 shows the results. EDRStore incurs limited extra network traffic compared with Plain.

Specifically, EDRStore has up to 16.0% more network traffic than Plain (in DOCKER), and the
additional traffic is within 10.0% for the other five datasets. Such additional network traffic has
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Fig. 9. (Exp#5) Network traffic. All results are normalized by Plain’s network traffic in GiB (numbered atop
the bars).

negligible impact on the upload performance in both the local cluster (where data transmission is
not the bottleneck) and even the real-cloud testbeds (§7.4).

7.4 Performance Analysis
We evaluate the upload and download performance of EDRStore in both the local cluster and
real-cloud testbeds.
Testbeds. For the local cluster, we deploy EDRStore over 12 machines with up to 10 clients, the
key server, and the cloud. Each of the client and key server machines has a quad-core 3.4 GHz Intel
Core i5-7500 CPU, 32GiB RAM, and a TOSHIBA DT01ACA 1TiB 7200 rpm SATA hard disk, while
the cloud machine has a 16-core 2.50GHz Intel(R) Xeon(R) Silver 4215 CPU, 96GiB RAM, and a
Western Digital Ultrastar DC SN640 3.84 TiB NVMe SSD. All machines run Ubuntu 20.04 and are
connected via 10GbE. We measure the upload and download throughput (Exp#6 and Exp#7) as
well as the CPU utilization (Exp#9) of EDRStore.

For the real-cloud testbed, we use Amazon’s Elastic Compute Cloud (EC2) [9] and Simple Storage
Service (S3) [10] to set up a geo-distributed environment. We deploy the cloud and the key server
on EC2 instances in Virginia (in East America), and deploy a client respectively in Virginia and
California (inWest America).We use EC2 spot instances [7], which leverage the unused EC2 capacity
to reduce the VM running costs of regular instances (e.g., 60-90% less [8]) but may be interrupted
occasionally. This is a cost-effective choice for backup workloads, where storage persistence is
often more important than access performance. We configure each EC2 spot instance with type
t2.2xlarge, which has eight vCPUs on a 2.30GHz Intel(R) Xeon(R) CPU E5-2686 v4 CPU and
32GiB RAM. Each instance is installed with Linux Ubuntu 20.04. We mount S3 via S3FS [56] in the
cloud as the storage backend.
Methodology. We focus on two datasets: GCC (with a medium logical size) and LINUX (with the
largest logical size). For the experiments in the local cluster (Exp#6 and Exp#7), we note that the
disk I/Os of client machines may bottleneck the upload and download performance. To examine
the maximum achievable performance without client-side disk I/Os, we load the snapshots into the
client’s memory before each upload experiment, and let the clients store the downloaded snapshots
in memory. For the real-cloud experiment (Exp#8), we report the end-to-end performance results
that include the disk I/Os of both the client and the cloud.
Exp#6 (Upload/download speeds).We compare the upload and download speeds of EDRStore,
Plain, MLE, and TED. We first focus on a single client. The client uploads all snapshots until they
are persisted to the local storage in the cloud machine, and then downloads the snapshots from the
cloud machine. Figure 10 shows the single-client upload and download speeds of EDRStore, Plain,
MLE, and TED.
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Fig. 10. (Exp#6) Single-client Upload and download speeds.
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Fig. 11. (Exp#6) Multiple-clients Upload and download speeds.

We first compare EDRStore and Plain and examine the performance overhead of EDRStore
due to its secure data protection. For uploads, EDRStore is slightly slower than Plain, as it also
performs key generation, encryption, and management of the base chunk index. For example, in
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GCC, the average upload speeds of EDRStore and Plain are 127.6MiB/s and 165.0MiB/s, respectively
(i.e., EDRStore is 22.6% slower than Plain); in LINUX, the average upload speed of EDRStore is
123.0MiB/s, which is 24.7% slower than that of Plain (i.e., 163.3MiB/s).

For downloads, EDRStore is slower than Plain, as it performs decryption and decompression in
the client. For example, in GCC, the average download speed of EDRStore is 251.5MiB/s, which
is 10.3% slower than that of Plain (i.e., 280.3MiB/s); in LINUX, the average download speeds of
EDRStore and Plain are 154.6MiB/s and 206.0MiB/s, respectively (i.e., EDRStore is 25.0% slower
than Plain). Note that EDRStore outperforms Plain in the first nine snapshots of LINUX downloads.
The reason is that in such snapshots, EDRStore does not have as many similar chunks as Plain
after encryption, and Plain needs to perform delta decoding on a large number of similar chunks in
downloads. For both EDRStore and Plain, the download speeds gradually decrease across snapshots
due to chunk fragmentation after deduplication and delta compression [17, 41, 78, 78]. We can
extend EDRStore with efficient restore approaches [17, 41, 77, 78] to mitigate the fragmentation
issue.

We then compare EDRStore with encrypted deduplication approaches (i.e., MLE and TED) to show
the performance overhead of EDRStore by achieving higher storage savings via delta compression
and local compression. For uploads, EDRStore is slower than MLE and TED. For example, in GCC,
the average upload speed of EDRStore is 127.6MiB/s, which is 23.2% and 22.3% slower than those
of MLE (166.2MiB/s) and TED (164.4MiB/s); in LINUX, the average upload speed of EDRStore is
123.0MiB/s, which is 33.4% and 31.2% slower than those of MLE (i.e., 184.6MiB/s) and TED (i.e.,
178.9MiB/s), respectively.

For downloads, interestingly, EDRStore is faster than MLE and TED (e.g., in GCC, the average
download speed of EDRStore is 251.5MiB/s, which is 66.4% and 115.0% faster than those of MLE (i.e.,
151.1MiB/s) and TED (i.e., 117.0MiB/s)). The reason is that EDRStore has a higher data reduction
ratio than MLE and TED (Exp#2), meaning that less data is stored. During downloads, EDRStore
retrieves less data from the cloud and hence incurs less I/O overhead. Even though EDRStore needs
to perform extra local decompression and delta decoding, its overall download speed is still higher
than those of MLE and TED.
We also evaluate the performance of EDRStore when multiple clients issue upload/download

requests concurrently. We sample 10 different GCC snapshots, each of which has a size of around
500MiB; and 10 different LINUX snapshots, each of which has a size of around 1GiB. For each
dataset, each client uploads one snapshot to the cloud and then downloads the snapshot from the
cloud. We measure the aggregate upload (download) speed as the total uploaded (downloaded) data
size divided by the total time when all clients complete the uploads (downloads). We compare the
aggregate upload and download speeds of EDRStore, Plain, MLE, and TED.

Figure 11 shows the multi-client upload and download speeds versus the number of clients. Both
GCC and LINUX show similar performance trends. The aggregate upload/download speeds for
all the four approaches first increase and then slightly drop (or keep stable) due to the resource
contention in the cloud machine (e.g., read/write contention and context switches across multiple
clients).

For example, in GCC uploads, EDRStore reaches 471.1MiB/s for 7 clients and then slightly drops
to 458.0MiB/s for 10 clients. In comparison, MLE reaches the highest aggregate upload speed of
819.7MiB/s for 7 clients, while TED reaches 791.9MiB/s, which are 74.0% and 68.1% faster than
EDRStore. The reason is that MLE and TED do not perform delta compression and local compression,
while EDRStore performs delta compression and local compression for additional storage savings.
Plain can reach 668.7MiB/s for 6 clients (i.e., 42.0% higher than EDRStore), as it does not perform
any cryptographic operation. For downloads, EDRStore and Plain have similar speeds, which are
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faster than those of MLE and TED. The reason is that MLE and TED have lower data reduction
ratios and need to retrieve more data from the cloud during downloads than EDRStore and Plain.
Exp#7 (Performance breakdown). We focus on the upload and download performance of a
single client in EDRStore using GCC and study the performance breakdown. We exclude the disk
I/O overhead from the cloud and measure the computational time of each step of the upload and
download operations. Specifically, we decompose the upload and download operations into the
following steps.
• Upload in the client: (i) Chunking, in which the client partitions the input file into data chunks;
(ii) fingerprinting (D), in which the client generates fingerprints for data chunks; (iii) feature
generation (D), in which the client generates features for data chunks; (iv) key generation, in
which the client sends the features of data chunks to the key server, and the key server returns
the key seeds to the client; (v) two-phase encryption, in which the client encrypts data chunks
via two-phase encryption; (vi) feature generation (E), in which the client generates features
for encrypted chunks; (vii) version index management, in which the client checks and updates
the version index to decide if local compression is performed on data chunks; and (viii) local
compression, in which the client performs local compression on the selected data chunks.

• Upload in the cloud: (i) fingerprinting (E), inwhich the cloud generates fingerprints for encrypted
chunks; (ii) deduplication, in which the cloud checks the fingerprint index to detect duplicate
encrypted chunks; (iii) delta compression (Uncomp), in which the cloud performs delta compression
on the encrypted uncompressed chunks with respect to the base chunks in the base chunk
index; (iv) base chunk index management, in which the cloud inserts or evicts chunks for the
base chunk index; (v) feature generation (Comp), in which the cloud generates features for the
encrypted compressed chunks; and (vi) delta compression (Comp), in which the cloud performs
delta compression on the encrypted compressed chunks.

• Download in the client: (i) decryption, in which the client decrypts the received encrypted
chunks; (ii) local decompression, in which the client performs local decompression on the com-
pressed chunks; (iii) re-encryption, in which the client re-encrypts the decompressed base chunks;
and (iv) delta decompression (Case 2), in which the client performs delta decompression for recon-
structing encrypted delta chunks. Note that Step (ii) corresponds to Cases 2 and 3 in downloads,
while Steps (iii) and (iv) correspond to Case 2 in downloads (§4.4).

• Download in the cloud: (i) delta decompression, in which the cloud performs delta decompression
on the encrypted delta chunk, corresponding to Cases 1 and 3 in downloads in §4.4.
Table 2 shows the breakdown, measured by the time for processing 1MiB of data in each step of

the upload and download operations. We first consider the upload operation. On the client side, both
two-phase encryption and version index management incur low performance overhead. Feature
generation is the most time-consuming step due to its expensive feature computation on all data
and encrypted chunks. Note that the two rounds of feature generation in the client are necessary:
the first (i.e., feature generation (D)) is on data chunks for similarity-aware key generation, and
the second (i.e., feature generation (E)) is on encrypted chunks for selective local compression.
On the cloud side, the most time-consuming step is delta compression, since it needs to fetch the
base chunks and perform byte-level encoding to generate delta chunks. Note that the time for
fingerprinting and feature generation on the client side is slightly higher than that in the cloud,
since the cloud is deployed on a more powerful machine.

We next consider the download operation. On the client side, the most time-consuming step is the
decompression as the client needs to decode every single byte based on its compression dictionary.
The delta decompression step incurs much lower overhead than the local decompression step since
it only needs to reconstruct the byte-level differences of a chunk, while the local decompression
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Steps Time (ms)

Client

Upload

Chunking 0.63 ± 0.013
Fingerprinting (D) 3.41 ± 0.079

Feature generation (D) 4.98 ± 0.058
Key generation 1.22 ± 0.010

Two-phase encryption 0.64 ± 0.008
Feature generation (E) 4.98 ± 0.073

Version index management 0.14 ± 0.002
Local compression 4.26 ± 0.095

Download

Decryption 0.36 ± 0.001
Local decompression 1.00 ± 0.001

Re-encryption 0.63 ± 0.012
Delta decompression (Case 2) 0.35 ± 0.010

Cloud
Upload

Fingerprinting (E) 2.82 ± 0.006
Deduplication 0.11 ± 0.001

Delta compression (Uncomp) 5.33 ± 0.024
Base chunk index management 1.34 ± 0.005
Feature generation (Comp) 4.28 ± 0.007
Delta compression (Comp) 5.23 ± 0.023

Download Delta decompression (Cases 1 and 3) 0.30 ± 0.002
Table 2. (Exp#7) Breakdown of time for processing 1MiB data in each step of the upload and download
operations in EDRStore using GCC. The numbers are the average results over five runs with the 95% confidence
interval based on the student’s t-distribution.

step needs to reconstruct all bytes of a chunk. On the cloud side, its delta decompression time is
less than that on the client side as the cloud machine is more powerful.

Exp#8 (Real-clouduploads and downloads).Weevaluate the real-cloud performance of EDRStore.
We focus on GCC and a single client. We let the client upload and then download GCC snapshots.
We compare EDRStore and Plain in the single-client upload and download speeds of EDRStore.

Figure 12 shows the results. As expected, the upload and download speeds depend on the region
in which the client resides. When the client is in Virginia, where the cloud and the key server are
deployed, the upload and download speeds are higher than when the client is in California. For
example, the upload speed of EDRStore is 50.2MiB/s in Virginia but drops to 18.5MiB/s in California.
Nevertheless, the performance of EDRStore is comparable to Plain, as network transmission and
reads from S3 are the performance bottleneck.
Interestingly, EDRStore has a slightly higher upload speed than Plain when the client is in

Virginia (by 12.1%). The reason is that Plain detects more similar chunks and hence fetches more
base chunks from S3 than EDRStore to perform delta compression during uploads, and the access
overhead to S3 is non-negligible. When the client is in California (Figure 12(b)), EDRStore and
Plain have almost identical upload and download speeds. This result is affected by two factors.
First, EDRStore introduces about 10% more upload traffic than Plain (Exp#5), thereby incurring
extra overhead for EDRStore. Second, as stated above, Plain fetches more base chunks from S3 than
EDRStore, thereby incurring extra overhead for Plain.
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Fig. 12. (Exp#8) Real-cloud uploads and downloads. The client is deployed in Virginia or California, while
both the key server and the cloud are deployed in Virginia. Each error bar represents the 95% confidence
interval based on the student’s t-distribution over five runs.

Dataset Method Client Cloud Key Server

GCC

Plain (0.09 ± 0.013) % (5.9 ± 0.06) % -
MLE (35.4 ± 0.73) % (5.3 ± 0.3) % (0.3 ± 0.02)
TED (33.7 ± 0.51) % (5.2 ± 0.04) % (0.3 ± 0.01) %

EDRStore (49.1 ± 0.60) % (12.7 ± 0.52) % (0.7 ± 0.03) %

LINUX

Plain (0.09 ± 0.015) % (5.7 ± 0.04) % -
MLE (34.0 ± 0.10) % (4.8 ± 0.02) % (0.3 ± 0.01)
TED (34.8 ± 0.15) (4.9 ± 0.02) (0.3 ± 0.01)

EDRStore (48.2 ± 0.52) % (11.5 ± 0.08) % (0.6 ± 0.02) %
Table 3. (Exp#9) CPU utilization. The numbers are the average results over five runs with the 95% confidence
interval based on the student’s t-distribution.

Exp#9 (CPU utilization).We evaluate the computational overhead of EDRStore by measuring
the CPU utilization of the client, the cloud, and the key server in the single-client upload operation
using GCC and LINUX. We compare EDRStore, Plain (which does not have a key server), MLE, and
TED. We use Intel VTune Profiler [32] to measure the CPU utilization ratio, defined as the ratio
between the average CPU time per CPU core (i.e., the time when a CPU core is actively running)
and the elapsed time (i.e., the wall time of the overall operation).
Table 3 shows the results. The client-side CPU utilization ratio of EDRStore is much higher

than that of Plain, since EDRStore introduces several computationally expensive operations to the
client for secure data protection, such as feature generation, encryption, and fingerprint generation.
The client-side CPU utilization ratio of EDRStore is also higher than those of MLE and TED, as
EDRStore performs feature generation and local compression in the client for storage efficiency.
Such CPU overhead can be reduced by deploying specialized hardware on the client side (e.g., using
cryptographic accelerators with dedicated circuits [12]) to perform cryptographic operations. Also,
we can use a lightweight resemblance detection algorithm [76] to mitigate the resource overhead
of feature extraction. We pose the reduction of CPU overhead as a future work.

In the cloud, EDRStore incurs more CPU overhead than Plain due to dual-fingerprint deduplica-
tion and version-aware chunk management (§4.3). The cloud-side CPU utilization ratio of EDRStore
is also higher than those of MLE and TED, as EDRStore performs delta compression in the cloud.
The CPU overhead of the key server is limited for EDRStore, MLE, and TED (note that Plain has no
key server).
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8 RELATEDWORK
Encrypted deduplication. In §2.2, we reviewed MLE [14] and server-aided MLE [13], the two
representative primitives for encrypted deduplication. Follow-up studies enhance server-aided MLE
with distributed key generation [24], frequency leakage mitigation [71], efficient metadata manage-
ment [38], and performance optimization [47, 55], but they do not consider delta compression and
local compression. DEBE [70] performs deduplication and local compression before encryption,
but relies on hardware trusted execution.

Some approaches perform encryption based on data similarity. REED [53] generates a key for a
segment of data chunks based on the minimum fingerprint of all data chunks in a segment, so that
similar segments (which likely have the same minimum fingerprint) maintain large fractions of
duplicate encrypted chunks for deduplication. Feature-based encryption [64] generates a key based
on the feature derived from a file, so that duplicate data chunks from similar files (with the same
key) can be mapped into duplicate encrypted chunks. However, they only focus on deduplication,
but do not consider delta compression on similar chunks.
To enable delta compression on the encrypted data, a recent work, EDelta [19], preserves data

similarity after encryption by applying the maximum Rabin hash [54] to data chunks as the key, so
that similar chunks are encrypted by the same key (see the arguments in §4.1). However, there are
two obvious security holes. First, it is vulnerable to offline brute-force attacks without having a
dedicated key server [13]; in contrast, EDRStore introduces a dedicated key server and ensures
that the key server cannot learn the chunk content and the resulting keys (§4.1). Second, a bitwise
XOR operation of two encrypted similar chunks can remove the encryption key and reveal the
XOR output of the corresponding plaintext data even without knowing the key (§4.2). Furthermore,
EDelta [19] only considers the combination of encryption and delta compression, while EDRStore
considers the combination of encryption and all three data reduction techniques (i.e., deduplication,
delta compression, and local compression).

Encrypted local compression. Instead of applying encryption to locally compressed data chunks
(§2.2), some studies address the combination of encryption and compression from a theoretical
perspective by proposing new encryption primitives for supporting compression on encrypted
chunks [34, 35, 37], but they are not implemented or empirically evaluated. Length-preserving
compression [18] performs local compression on data chunks and pads zeroes on the compressed
chunks before encryption, but it does not consider deduplication and delta compression.

9 CONCLUSION
EDRStore realizes encrypted data reduction by carefully combining deduplication, delta compres-
sion, and local compression with encryption to achieve both storage savings and data confidentiality.
It includes new design schemes, including key generation, two-phase encryption, and selective local
compression. We discuss the security guarantees and limitations of EDRStore. Our experiments
show that EDRStore achieves high storage savings in real-world datasets and incurs moderate
performance overhead.
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