FOCES: Detecting Forwarding Anomalies in Software
Defined Networks

Peng Zhang!, Shimin Xut, Zuoru Yang?!, Hao Lit, Qi Li?,
Huanzhao Wang! , Chengchen Hu?

1Xi’an Jiaotong University
?Tsinghua University

ICDCS 2018

Introduction

B dstip=10001
» Forwarding abstraction of Software [} dst_ip=192.168.1.1

Defined Network (SDN)
e BN
SO

« Match-Action model
S1’s forwarding table

L&
S2

» A packet:
* 1. match a rule in switches
» 2. execute the related actions
« 3. update the counter

Match Action Counter
Rule 1 dst_ip=10.0.0.0/8 forward to port 2

Rule 2 dst ip=192.168.0.0/16 | forward to port 3 2

Forwarding Anomaly

» Normally, Forwarding anomaly can be

classified into three types:
« Early Drop: S1->_L
- Switch Bypass: S1->S5, S1->S3->54->S5
« Detour: S1->52->53->54->52->55

» Forwarding anomaly can cause

violation of critical security policy
« Flow may bypass the firewall

Countermeasures

» Rule Dumping

* Read all the forwarding rules from suspicious switches, and checks the
Integrity of them

 Limitation: compromised switches can easily bypass the detection by
just reporting the original rules

» Path Validation

« Each switch imprints packets with signature, so that the destination
switch can check whether the path traversed by a packet is correct.

 Limitation: need to modify switches to support cryptographic
operations, high overhead.

Intuition of Statistics Verification

» Packets leave traces (l.e., counters) when they are
forwarded along their paths

» |If we know how packets SHOULD be forwarded, then we
can have constraints on counters of different switches

» If the packets deviate from their paths, then the constraints
shall be violated.

Toy Example
» We know the path should be:

5010 g9 1l.g22.g5 15,

> 10, rl, r2, r5 should have the same counter value, and r3, r4
should have zero counter value. ("Flow Conservation Principle”)

“I
“I
“‘
e®

. .counter=a

rO.counter=a rl.counter=

ay e®
LY .
lllllllllllllllllllllllll

r3.counter=a r4.counter=8

Toy Example

» In real network, there are more than one flows, and each rule may
match multiple flows.

e.g., each counter may aggregate multiple flows(wildcard)

Ny
gy
Ny
[}
......
Ty
Ny
Ny

“,y
....
a
a

‘A
4
‘colinter=a+b+c

... S3 S4 >

rOQ.counter=a rl.counter=

r3.counter=a r4.counter=a+c

The motivation of this work

» All the previous statistics verification tools check whether the
counters of a individual flow conform to the flow conservation

principle.

»However, applying the flow conservation principle for each
iIndividual flow has two serious limitations:

« Limited Detection Scope: miss some forwarding anomalies
happening to flows that are not check.

- High Flow Table Overhead: install dedicated rules to collect the
statistics of a specific flow.

An Open Question: Can we extend the flow conservation
principle from individual flows to a network of flows?

Qutline

> QOverview

» FOCES: Theoretical Construction

> FOCES: Make it work

»Implementation & Evaluation

FOCES: FIOw Counter Equation System

> All the flows in the network: f,f,,---, f
» All the rules In the network: r,r,,---,r.
» Define the Flow Counter Matrix (FCM) H_ as:

_{1 If flow J hits rule i

"0 otherwise

> Let the counter of rule r, be Y ,and Y =(y, VY, V.)

A\

_et the volume of flow f, be X ,and X =(x,x,,---,x)

» If there are no forwarding anomalies:
H-X=Y

FOCES: FIOw Counter Equation System

» When there are forwarding anomalies, the real FCM will be H' = H
, and the real counter vector willbe Y'=H'- X..

» However, we do not know either H’ or X, but it is expected that
H - X =Y’should probably has no solutions if m>n , whenitis a
over-determined equation system

> The least square solution willbe X =(H'H)"H"Y'
and we should have | |=]Y'— HX |0 (the standard to judge the
anomaly)

11

Counter Constraints

For Example Rule Counter comers
r0 a a
rl a i a
Ts r2 a+b - b
r3 0 i a
r4 c atc
) a+b+c a+b+c

fif2 I3

a

a
% b
X =
2 a
X3

a+c

\\ \a+b+c1/

0 0) =0 mmp Forwarding Anomaly

12

Does this method always work?

Unfortunately, No

Counter Constraints

b d
For Example " hseried
r0 a . a
.l"f a E a
.1"'2 CI"‘b ——— E b
r3 0 a+tc
r4 c i atc :
fl fZ f3 ry a+b+c La+b+‘7
0 0 (a) 2)
O O a a xl a
1 0 b b
: b — 2 =
0 1) a-+c a-+c
01 platc ’ a+c
1 1) la+b+c \a+b+c)

T

=(0 0 0 0 0 0) mwp Normal (Wrong Result)

14

The Reason of this Failure

» The observed counters in this example

Ty
gy
gy
]
......
uy
Ny
g

b,
....
L
a

*
"

rO.Counter:3 . >lllllllnllllllllllll lllll

.
.
.
llllll

r3.counter=8 r4.counter=8

15

The Reason of this Failure

» The estimated counters in this example
e same as the observed one

» Finding:
e FOCES cannot work for this case

gy
Ty
gy
]
......
Ny
uy
uy

.
",
",

...............
........

......

.
L 3
.
o**
o
.

.

rO.counter=3 rl.counter=3

Question: How to identify the detectability |gies
of a given case? r3.counter=8 r4.counter=8

.
.
.
lllllll

16

Analysis on Detectability

»Theorem 1:If h =>h is undetectable if and only ifh' lies in

the linear subspace generated by h,h,,---,h,
 Theorem 1 is different to apply in real network
« Its algorithm is complex

»Theorem 2: If h =>h is undetectable if and only if there is a

switch S whose RBG G!'(V, .V, E) contains a loop
« reduce Theorem 1 to the problem of finding loops in a bipartite graph

17

Review the Failure Example

Counter Constraints

observed

Rule Counter counters

r0 a i a

rl a a

r2 a+b ---» , b

r3 0 i a+c

r4 c L a+c

r5 at+b+c a+b+c

» The Rule Bipartite Graph (RBG) of S2
» aloop marked in green dashed lines

18

Qutline

> QOverview

» FOCES: Theoretical Construction

> FOCES: Make it work

»Implementation & Evaluation

Make FOCES Work in Realistic Settings

> Noises:

« Packet losses) =Y —HX |20
« Qut-of-sync counter

» Scalability:
 Calculating the inverse of FCM is expensive Hard to apply in large
when there are a large number of rules and ‘ scale network
flows

20

Threshold-based Detection Algorithm

» Basic ldea: define the anomaly index (Al) to measure the
possibility of forwarding anomaly, and eliminate the impact of
such noises

Err_ ..

»Anomaly Index: Err_
« the ratio of Maximum and Median of all elements inl_|
 When there are forwarding anomalies, the Al should be
very large (“majority good” assumption)

»Detection Threshold: T
« Al >T: forwarding anomalies
« T =45 is the default detection threshold (“three-sigma rule” in
probability theory)

21

Making FOCES Scalable

» Basic Idea: make FOCES scalable by reducing the computation

time
 Itis inspired by the Rule Bipartite Graph (RBG)
« Shrank the scale of FCM
» FCM Slicing:
 extract the sub-FCM corresponding to the RBG.

e Sub-FCMs are much smaller than the original FCM, it reduces the

computation time.

Vin I

> For Example: 1
H = 1

Vou 17N 0

out ! 0

-1

Rule Bipartite Graph for S2 fi

SO = OoO o

/2

f3

= o O o O

O R

o = 0O O

roo9

22

Making FOCES Scalable

»Theorem 3: If a forwarding anomaly h. - h' is detectable

(without slicing), then it is still detectable when using slicing.
« using slicing is equivalent to the baseline method in detecting
forwarding anomalies

» Analysis on Computation Complexity Reduction:
« without slicing: O(N?3) N is the size of the FCM (approximately
equals to that of Matrix Inversion)
« with slicing: O(N?2)

23

Qutline

> QOverview

» FOCES: Theoretical Construction

> FOCES: Make it work

> Implementation & Evaluation

Implementation

» FOCES prototype:

1500 LOC in Python

FCM Generator: ATPG, Floodlight
REST API

Statistics Collector: Floodlight REST
API, parse counters

Equation System Solver: “NumPy”
library, “sparse” library of python

Threshold-based Detector

T error vect.

Equation System Solver

T FCM T counter vect.
FCM Generator Statistics Collector
4 flow rules 4 flow stat

25

Experiment Setup

» SDN Controller: Floodlight v2.1

» Network: Mininet + Open vSwitches

» Topologies: Stanford, FatTree(4), BCube(1, 4), DCell(1, 4)

switches # hosts # flows # rules

Stanford 26 26 650 1300
FatTree(4) 20 16 240 556
BCube(1,4) 24 16 240 597

DCell(1,4) 25 20 380 859

26

Functional Test

» Setting
« BCube(1, 4)
« Packet Loss Rates: 0%, 5%, 10%
* Modify a rule: 60s-120s

» Finding
» Al quickly goes beyond the threshold,
when forwarding anomalies happen.

 Normal and anomaly cases become
less distinguishable when packet loss
rates increase

200

27

Detection Precision vs. Number of Anom

] .. TP
> Detection Precision ——
TP+FP

« Randomly modify 1, 2, and 3 rules.

 Detection threshold: 3.5

» Findings
* Precision increases when more
rules are modified.

 Packet loss rate < 10%:
precision > 90%

1

FPrecision
=
(=)]

Precision
o o
()] o =

=
E Y

o

- =1 flow entry

- —+3 flow entries

- =1 flow entry

-4-2 flow entries

- —+3 flow entries

0.1 0.2
Packet Loss Rate

(a) Stanford

-2 flow entries

0.1 0.2
Packet Loss Rate

(c) BCube(1,4)

Frecision

Frecision
=
)]

—
i

ot
co

0.6+ =1 flow entry
-2-2 flow entries
0.4} —+3 flow entries

0 0.1 0.2
Packet Loss Rate

(b) FatTree(4)

—_—

alies

ot
oo

6+ =1 flow entry
-2-2 flow entries
- —+3 flow entries

o
B

0 0.1 0.2

Packet Loss Rate

(d) DCell(1,4)

28

Detection Accuracy vs. Detection Threshold

» The Recover Operating Characteristic
(ROC) Curve
* Detection threshold: 1 ~ 100
» Packet loss rates: 0% ~ 25%

» Findings
« Accuracy of FOCES is little affected:
Packet Loss Rate < 10%
 Best detection threshold: around 4.5

« Best performance: TP rate nearly 100%
and a FP rate around 4.3%.

1 by

. ..__.---";"E_G%

5%
—£-10%
—6-15%
—20%
; —#e—25%)
0 0.5 1

False Positive Rate

True Positive Rate
=
on

(a) Stanford

0%
5%
=2 10%
—-15%
—20%

; —e—25%)
0 0.5 1

False Positive Rate

True Positive Rate
=
on

(c¢) BCube(1.,4)

FaN

1§

3 *

o _ - e

. F 0%

205 %%

2 —A-10%

o 4-15%

o ——20%

F ok | —~#-25% |
0 0.5 1

False Positive Rate

(b) FatTree(4)

e

o9

4y

oY 2 ol g

@ B 0%

Z 05 ’ 5%

@ ~4-10%

o 4-15%

= ——20%

- of | —4-25%|
0 0.5 1

False Positive Rate

(d) DCell(1,4)

29

» Detection Accuracy

The Effectiveness of Slicing

TP+TN
N+P

Slicing can achieve an even better detection

accuracy, except for BCube(1, 4) topology.

» Computation time:

Topology: FatTree(8)

Computation time: slicing grows much slower
than without slicing.

Reduction of computation overhead: nearly
80%

E? 1 1
508}
306l
'f:: ' Baseline
S04y i Slicing
802}
Q
0O
Bcube Dcell FatTree(4) Stanford
Topology
—~B6
mm -a-Baseline
© 4| =Slicing
X
o2f
£
=0 -
0 5 10

Number of Flows (x10°)

Conclusions

» Study how to extend flow conservation principle from individual
flows to a network of flows and how to use it detect forwarding
anomalies

»Design and analyze FOCES from both theoretical and practical
perspectives

»Build FOCES prototype and conduct extensive experiments on
Mininet with four topologies
« Empirical results match theories

» Future Work:
« The localization of the compromised switch (we have just
finished it)

31

