Accelerating Encrypted Deduplication via SGX

Yanjing Ren*, Jingwei Li*, Zuoru Yang®, Patrick P. C. Lee #, and Xiaosong Zhang*
*University of Electronic Science and Technology of China

#The Chinese University of Hong Kong

USENIX ATC 2021

Outsourcing Storage

» Outsourcing data management to cloud is common In practice
« 22% business data are stored in the cloud!’]

» Outsourcing storage should fulfill security and storage efficiency
« Security: protect outsourced data against unauthorized access
« Storage efficiency: reduce storage footprints

[*]nttps:/Iwww.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data Report_2020.pdf

Encrypted Deduplication

» Encrypt plaintext chunks followed by performing deduplication on
ciphertext chunks

 Traditional encryption is incompatible with cross-user deduplication

» Message-locked encryption (MLE)ggjare. Eurocrypt13): US€ content-
derived keys for encryption, so as to enable cross-user deduplication

Content-derived key

|
. Ko
ﬁ Plaintext M, %é Ciphertext C,
Can be Can be Example: _
dedup’e dedup’ed K = hash of plaintext
i - Ko =
i Plalnt|ext M, %a{ “L Ciphertext C,

Content-derived key 3

MLE-based Implementation

Key Global lsecret

OPRF _2 — Cloud

. Plaintext chunks %:ertext chunks Ej Ei
MUItlpIe — A — n > Dedup
clients - De'dup 1 engine

» Use server-aided architecture to prevent offline brute-force attacks

» Protect key generation via oblivious pseudorandom function (OPRF) to
prevent key server from learning plaintext chunks

» Perform target-basedggare. security13) OF SOUrce-basedyeyi ccs14; deduplication
« Target-based: upload all chunks and remove duplicates in the cloud
« Source-based: upload fingerprints for duplicate check, followed by only non-duplicate chunks

4

MLE-based Implementation

: : Ke
High comﬁutatlonal y Globallsecret high bandwidth
overhead server KeyGen loud overhead or high
OPRF_A2 — Clou computational
] Plaintext chunks %:ertext chunks @ S overhead
Multiple o « > Dedup
clients - De'dup 1 engine

» OPREF is known to incur high computational overheadq;, o517
» Target-based deduplication has high bandwidth overhead

» Source-based deduplication incurs information leakage
« A malicious client can fake fingerprints to learn deduplication patterns of corresponding chunks

* Need to be protected by proof-of-ownership (POW) jaievi ccs11, Which is computationally
expensive

MLE-based Implementation

i ' Ke
High computational Y | Global secret high bandwidth
overhead SErverif KeyGen loud overhead or high
OPRF_A2 — Clou computational
] Plaintext chunks %:ertext chunks @ @ overhead
Multiple o « > Dedup
clients = De'dup 1 engine

» OPREF is known to incur high computational overheadq;, o517
» Target-based deduplication has high bandwidth overhead

» Source-based deduplication incurs information leakage
« A malicious client can fake fingerprints to learn deduplication patterns of corresponding chunks

* Need to be protected by proof-of-ownership (POW) jaievi ccs11, Which is computationally
expensive

How to accelerate encrypted deduplication while preserving security?

Contributions

» SGXDedup: use Intel SGX to speed up encrypted deduplication
* Replace expensive cryptographic protection by hardware-based protection
* Three key designs to preserve security and boost performance

» Extensive experiments:
« 131.9% key generation and 8.2x PoW speedups over existing approaches

* 8.1x throughput over existing software-based encrypted deduplicationge e
Security’13]

SGX Basics

» Isolation: allow to allocate an isolated memory region (enclave)
against host system

* Enclave is of limited size (e.g., 128MB)

> Attestation: can attest in-enclave contents via remote attestation
« Remote attestation incurs huge latency (e.g., ~9s in our region)

» Sealing: enclave can securely move in-enclave contents into
unprotected memory via encryption

« Only the same enclave can access its sealed contents

Design Goals

» Preserve goals of software-based encrypted deduplication
« Confidentiality: Protect chunks and keys against unauthorized access
« Storage efficiency: Remove all duplicate chunks

» Boost performance via hardware-based approach
« Bandwidth efficiency: Only need to transfer non-duplicate chunks

« Computational efficiency: Mitigate computational overhead of
cryptographic primitives

SGXDedup

Globallsecret Key
Key server
KeyGen enclave y
!
Multiple clients Secure channel Cloud
Plaintext chunks PoW enclave i @
L& |=> | Fp | Sig Dedup
] engine

» Key enclave:

« Connected with each client via secure channel | Protect key generation
- Perform key generation: K = H(fp || GlobalSecret)] without expensive OPRF

» PoW enclave:

« Generate signature for each fingerprint, such that cloud can verify authenticity
of fingerprints — lightweight protection on source-based deduplicatiof

Questions

» Q1: How should enclaves be securely and efficiently bootstrapped?
* The global secret needs to be securely bootstrapped into key enclave
* Enclave startup incurs high latencies due to remote attestation

» Q2: How should the secure channel be established?
* Necessary to enable revocation on clients’ querying key generation

» Q3: How should key enclave reduce its computational overhead of
managing secure channels?

« The computational overhead is high as the number of clients increases

11

Enclave Management

» Compute global secret from an in-enclave sub-secret (from cloud)
and an input sub-secret (from key server)

* Prevent either cloud or key server from learning the whole global secret

» Attest key enclave and PoW enclave offline

 After attestation, both cloud and each PoW enclave share a PoW key to
verify authenticity of fingerprints

» Use sealing to avoid re-attesting PoW enclave after its first bootstrap
 PoW enclave may be bootstrapped and terminated with client
« Seal (unseal) PoW key when PoW enclave terminates (bootstraps again)

12

Renewable Blinded Key Management

» Build secure channel based on a blinded key shared by clients and
key enclave

» Update blinded key if some clients are revoked
* Key update is based on key regressions, npssoe), SO @s to support lazy update

» Synchronize blinded keys between key enclave and authorized clients
« Key enclave derives new blinded keys based on an in-enclave blinded secret
« Authorized clients download up-to-date blinded keys from cloud

13

SGX-based Speculative Encryption

» Build on s_peculative encryptiongquardo, FasT 197 t0 reduce online
computational overhead of key enclave
« Speculative encryption: fp XOR|E(blindedKey, nonce||counter)| mask
 Allow to compute masks offline

» Manage each nonce and corresponding masks in key enclave
« Each client is associated with a nonce
 Manage an in-enclave nonce index to ensure unique nonce for each client
« Take up to 3MB enclave space for nonce index to serve 112K clients

» Pre-compute masks of each nonce automatically

« Store pre-computed masks in a 90MB mask buffer that can be used to
process the fingerprints of 11.25GB data

14

Experimental Setup

» Implement SGXDedup in Linux
« ~14.2K line of C++ code

» Real-world datasets:
« FSL: users’ home directory backups (56.2TB, 431.9GB after deduplication)
« MS: windows file system snapshots (14.4TB, 2.4TB after deduplication)

> Testbed:

« Multiple machines connected with 10GbE
« Each machine has Intel Core i5-7400 3.0GHz CPU and 8GB RAM

15

Overall System

— [] DupLESS [l SGXDedup-1st [] PlainDedup-1st [l SGXDedup-2nd [] PlainDedup-2nd - B SGXDedup [| PlainDedup 579
300/ ogg 2 600 491 =
237 239 242 242 e

= 500 183 183|188 1941202 = 400 303

3 107 106 B 201

@ 100, 22001 400 115

P o =Ml 20 20 NN ,
1Gbps 5Gbps 10Gbps 1Gbps 5Gbps 10Gbps

(a) Upload (b) Download
» 8.1x and 9.6x speedups over DUpLESS in first and second uploads

» The performance of DUpLESS is bounded by OPRF-based key generation
« The second upload is faster than the first upload due to source-based deduplication

» 17.5% upload and 44.2% download performance drops over PlainDedup
« Overhead comes from key generation, encryption, PoW and decryption

» More results in our paper:
 637.0 MB/s aggerate upload speed for 10 clients
* 9.7x speedup over DUpLESS in real-cloud deployment 16

Trace-driven Performance

© SGXDedup-Upload € SGXDedup-Download & PlainDedup-Upload € PlainDedup-Download

gggg: »-0-0—0-C-6-© © © QZOO D Or>& o o

e ©
2150_5,96@-0-0—0-0.9.9 2150 &6 o ©©-0-0-n ¢

8 50()-9_%9_0 8 SOWM
w»“ ob—— -~ -~ -~ -~ ~w oL Y @7
12345678 910 1234567 8 910
Snapshot Snapshot
(a) FSL dataset (b) MS dataset

» SGXDedup incurs 21.4% upload performance drop from PlainDedup
* To replay trace, chunking is disabled
« The bottleneck of SGXDedup is PoW while that of PlainDedup is fingerprinting

» The download speed is bounded due to chunk fragmentation .

Conclusion

» SGXDedup: mitigate performance overhead of encrypted
deduplication via SGX

« Offload expensive cryptographic operations by directly running sensitive
operations in enclaves

* Three designs:
« Secure and efficient enclave management
* Renewable blinded key management
« SGX-based speculative encryption for lightweight computations

» Source code: http://adslab.cse.cuhk.edu.hk/software/sgxdedup

18

http://adslab.cse.cuhk.edu.hk/software/sgxdedup

