
Balancing Storage Efficiency and Data Confidentiality

with Tunable Encrypted Deduplication

Jingwei Li*, Zuoru Yang#, Yanjing Ren*, Patrick P. C. Lee#, Xiaosong Zhang*

*University of Electronic Science and Technology of China (UESTC)
#The Chinese University of Hong Kong (CUHK)

EuroSys 2020

1

Deduplication

➢Deduplication → coarse-grained compression

• Units: chunks (fixed- or variable-size)

➢Stores only one copy of duplicate chunks

2

Storage space saved

by 5/12 = 42%!

Encrypted Deduplication

➢Augments deduplication with encryption for data confidentiality

➢Application: outsourced storage

3

Encryption

Encryption

🔒 D
e

d
u

p
lic

a
tio

n

🔒

Storage Provider

Which crypto

primitive should

be used?

Encryption Primitives

➢Symmetric-key encryption (SKE)

• Derives a random key for chunk encryption/decryption

• Ensures confidentiality, but prohibits deduplication of duplicate chunks

➢Message-locked encryption (MLE) [Bellare et al., Eurocrypt’13]

• Derives a deterministic key from chunk content

• Supports deduplication, but leaks frequency distribution of plaintext

chunks [Li et al., DSN’17]

4

Pose a dilemma of choosing the right cryptographic primitive

Our Contributions

➢TED: a tunable encrypted deduplication primitive for balancing

trade-off between storage efficiency and data confidentiality

• Includes three new designs

• Minimizes frequency leakage via a configurable storage blowup factor

➢TEDStore: encrypted deduplication prototype based on TED

• TED incurs only limited performance overhead

➢Extensive trace-driven analysis and prototype experiments

5

➢Key derivation with three inputs: chunk M, current frequency f, and

balance parameter t

• f: cumulative and increases with number of duplicates of M

• t: controls maximum allowed number of duplicate copies for a ciphertext chunk

➢Special cases:

• t = 1 → SKE

• t → ∞ → MLE

Main Idea

6

K = H(M || ⌊f/t⌋)
Hash

Function
M

f t

🔑K

Design Overview

➢TED builds on server-aided MLE architecture in DupLESS
[Bellare et al., Security’13]

• Key generation by key manager to prevent offline brute-force attacks

7

Deduplication

Provider

Key Manager

Clients

Chunk
… Chunk

Questions

➢Q1: How does the key manager learn chunk frequencies?

• Low overhead required even for many chunks

➢Q2: How does the key manager generate keys for chunks?

• Distinct sequences of ciphertext chunks required for identical files

➢Q3: How should the balance parameter t be configured in practice?

• Adaptive for different workloads

8

Sketch-based Frequency Counting

➢Key manager estimates f via Count-Min Sketch [Cormode 2005]

• Fixed memory usage with provable error bounds

➢Client sends short hashes {Hi(M)} to key manager

• Key manager cannot readily infer M from short hashes
9

w counters per row

M

Count-Min Sketch

r rows

+1

+1

+1

+1

H1(M)

Hr(M)

f = minimum counter

indexed by (i, Hi(M))

Probabilistic Key Generation

➢Selects K uniformly from candidate keys derived from 0, 1,…, ⌊f/t⌋

• Enables probabilistic encryption on identical files

• Maintains deduplication effectiveness

• Reason: f is cumulative; keys derived from 0, 1,…, ⌊f/t⌋-1 have been used to encrypt

some old copies of M

10

MMMM … … ……MMMM … … …………

Processing sequence

🔒

🔑 K0

🔒

🔑 K0

🔒

🔑 K1

🔒

🔑 K1

🔒

🔑 K2

🔒

🔑 K2

🔒

🔑 K3🔑 K ← {K0, K1, K2, K3}

Already encrypted chunks

Automated Parameter Configuration

➢Configure t by solving optimization problem, given:

• Frequency distribution for a batch of plaintext chunks

• Affordable storage blowup b over exact deduplication

➢Goal: minimize frequency leakage

• Quantify frequency leakage by Kullback-Leibler distance (KLD)

• KLD: relative entropy to uniform distribution

• A lower KLD implies higher robustness against frequency analysis

• Configure t from the returned optimal frequency distribution of ciphertext

chunks

11

Evaluation

➢TEDStore realizes TED in encrypted deduplication storage

• ~4.5K line of C++ code in Linux

➢Trace analysis

• FSL: file system snapshots (42 backups; 3.08TB raw data)

• MS: windows file system snapshots (30 backups; 3.91TB raw data)

➢Prototype experiments

• Local 10 GbE cluster

12

Trade-off Analysis (FSL Dataset)

➢Basic TED and Full TED effectively balance trade-off

➢Full TED readily configures actual storage blowup
13

➢Schemes

• MLE

• SKE

• MinHash [Li et al., DSN’17]

• Basic TED (varying t)

• Full TED (varying b)

Prototype Experiments

14

Computational time

per 1MB of uploads

TED operations

Steps
Fast

(MD5, AES-128)

Secure

(SHA-256, AES-256)

Chunking 0.8ms

Fingerprinting 1.7ms 2.6ms

Hashing 0.4ms

Key Seeding 0.01ms 0.04ms

Key Derivation 0.07ms 0.1ms

Encryption 3.7ms 4.9ms

➢TED incurs limited overhead (7.2% for Fast; 6.1% for Secure)

➢More results in paper:

• TED achieves ~30X key generation speedup over existing approaches

• Multi-client upload/download performance

Conclusion

➢TED: encrypted deduplication primitive that enables controllable

trade-off between storage efficiency and data confidentiality

• Sketch-based frequency counting

• Probabilistic key generation

• Automated parameter configuration

➢Source code: http://adslab.cse.cuhk.edu.hk/software/ted

15

